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ABSTRACT: Since the development of the green fluorescent protein,
fluorescent proteins (FP) are indispensable tools in molecular biology.
Some FPs change their structure under illumination, which affects their
interaction with other biomolecules or proteins. In particular, FPs that
are able to form switchable dimers became an important tool in the field
of optogenetics. They are widely used for the investigation of signaling
pathways, the control of surface recruitment, as well as enzyme and gene
regulation. However, optogenetics did not yet develop tools for the
investigation of biomechanical processes. This could be leveraged if one
could find a light-switchable FP dimer that is able to withstand
sufficiently high forces. In this work, we measure the rupture force of the
switchable interface in pdDronpa1.2 dimers using atomic force microscopy-based single molecule force spectroscopy. The most
probable dimer rupture force amounts to around 80 pN at a pulling speed of 1600 nm/s. After switching of the dimer using
illumination at 488 nm, there are hardly any measurable interface interactions, which indicates the successful dissociation of the
dimers. Hence this Dronpa dimer could expand the current toolbox in optogenetics with new opto-biomechanical applications
like the control of tension in adhesion processes.
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Light-switchable fluorescent proteins (ls-FP) like the green
fluorescent protein (GFP) have become an essential tool

in biology for imaging and tracking of processes inside cells.1−5

Beyond that, optogenetic methods employ them to even
dynamically control such processes.6−8 These tools exploit the
fact that ls-FPs change their structure upon irradiation with
light of a suitable wavelength. Since the protein function is
directly encoded in its structure, this alters the way the FP
interacts with its environment. For example, light alters the
affinity of light-inducible dimerizers to the corresponding
ligand. Hence, the association of these dimers can be directly
controlled using light pulses.9−12 This has been utilized for
subcellular localization of proteins13−15 as well as gene and
enzyme regulation.6,16,17 In the broader context, optogenetic
tools have been employed for achieving synaptic control and to
study signaling network dynamics.8

This list of potential applications, however, does not include
methods for biomechnical investigations. It is known that
many processes in cells are controlled by forces.18,19 Cells
continuously sense their environment using mechanosensors in
the cell membrane, i.e., the focal adhesions. From there, the
signals are transduced and affect the organization of the
cytoskeleton and with it the cell shape or cell migration and
also more complex processes like cell division and differ-
entiation.20−27 So far, such processes could be potentially
investigated using static FP force sensors that lose their
fluorescence when unfolded28−30 or FRET based tension
sensors. However, this does not allow for dynamic control or

triggering of force-induced reactions, e.g., by revealing a cryptic
binding site.31 This lack of mechanobiology applications in the
optogenetics toolbox could be diminished if robust ls-FPs with
a sufficiently high interface rupture force could be found or
designed.
In this work, we investigate the ls-FP Dronpa, which is

known from optogenetics.17,32,33 It is derived from a tetrameric
FP found in Pectiniidae corals and has a characteristic β-barrel
structure similar to GFP.34 It has a remarkable photostability
and was shown to be switchable more than 50 times between
its dark and bright fluorescent state.35 The binding interfaces
were further modified to yield a dimeric Dronpa variant.17 This
variant has successfully been used to control the accessibility of
the active site of kinases and thus their activity as well as for
gene regulation.32,33 Here we investigate the interface
interaction in the pdDronpa1.2 dimer32 (see Figure 1a), by
using atomic force microscopy (AFM)-based single molecule
force spectroscopy (SMFS). The results reveal a most probable
interface rupture force of 80 pN in the bright state that is no
longer detectable when switched to the dark state. Hence the
dimer association can be controlled by light as well as by force.
This opens the way for possible applications of this system in
biomechanics studies.
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Results and Discussion. In order to characterize
individual pdDronpa1.2 homodimers by SMFS, we designed
a protein construct, where we linked two Dronpa domains with
a flexible linker.36 The dimer was further fused to a pulling
handle, a strategy that has already been successfully applied to
probe the unfolding of individual proteins.37,38 The linker was
made out of 73 amino acids, which corresponds to a contour
length increment of ca. 28 nm. This increment can be easily
detected in SMFS and thus facilitates the direct and
simultaneous identification of the interface rupture event and
the unfolding of the individual Dronpa domains in a single
experiment. Figure 1b shows the complete scheme of the
SMFS measurement. The protein construct is clamped
between the AFM cantilever and the sample surface and
then pulled apart.38,39 The specificity of the measurement is
granted by using the XDocIII/CohE cohesin dockerin receptor
ligand pair from R. f lavefaciens as a protein handle.40 Both
proteins, the Dronpa dimer and the CohE, were covalently
attached to the cantilever and the sample, respectively, using
polyethylene glycol (PEG) spacers with a molecular weight of
5000 Da. Switching of the Dronpa dimer was achieved via total

internal reflection (TIR) illumination from below the sample
slide. Initially the sample was illuminated with 405 nm light for
a short instance (5 s) to prepare the proteins in the bright state
that allows for intramolecular domain association. In the
second part of the experiment, the sample was intermittently
illuminated with 488 nm light in order to switch the domains
to their dark state and to trigger dissociation of the Dronpa
domains.
The force extension curves from the SMFS measurement

were filtered using the specific XDocIII/CohE fingerprint
interaction. A total of 213 specific curves was obtained for the
domains that were prepared in the bright state (i.e., after 405
nm illumination). They could be classified into two main
classes. Examples of the force extension curves are shown in
Figure 2a. Besides the characteristic peak from the
XDocIII/CohE rupture, the first class contains 166 curves
that show three characteristic peaks (indicated with arrows in
Figure 2a). Remarkably, these rupture events had similar
unfolding forces of around 80 pN. The second class contained
44 curves and revealed only two peaks with similar unfolding
forces. The measurement of the dark state dimers yielded 87

Figure 1. (a) Crystal structure of the fluorescent and dark state of Dronpa (PDB: 6D39 (bright) and 2POX (dark)). The bright state can be
switched to the dark one by intense irradiation with blue light (λ = 488 nm). The backswitching is triggered by dim light at 405 nm. (b) Scheme of
the experimental setup used for AFM-based SMFS.

Figure 2. Exemplary force extension curves and contour length histograms with Gaussian fits from SMFS of the pdDronpa1.2 dimer. Unfolding
events that are specific for the Dronpa dimer are indicated with arrows. Blue parts are from the PEG stretching as well as the specific
XDocIII/CohE rupture. (a and b) Results of pdDronpa1.2 dimers prepared in the bright state. The red part represents the interface rupture, and
the green parts represent the pdDronpa1.2 unfolding. Dronpa domains were colored slightly differently to enhance the readability of the scheme.
Violet indicates the events with a supposed simultaneous rupture of the interface and unfolding of one Dronpa subunit. (c and d) Results of
pdDronpa1.2 dimers prepared in the dark, nonbinding state. The fit parameters are available in the Supporting Information.
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specific curves (Figure 2c,d). Most of the (N = 69) curves
belong to a single class with two Dronpa related peaks.
The contour length increments lc of the force peaks were

calculated from fits based on the worm-like chain model with a
fixed persistence length of 0.4 nm. The results for the bright
state experiment are displayed in the histogram in Figure 2b.
They reveal peaks at 37.8, 72.9, and 109.2 nm. The peak at 73
nm is found in all curve classes. If we consider the lc of a single
amino acid to be around 0.35−0.38 nm41 and take into
account that Dronpa has about 210 structured amino acids
with an end-to-end distance of 2.5 nm, it follows that the
expected lc for Dronpa unfolding is in the range from 71 to 77
nm. This is in good agreement with our experimental value.
Therefore, we attribute this force peak to the unfolding of the
Dronpa domains. The remaining peaks at 37.8 and 109.2 nm
in Figure 2b can be explained with the rupture of the interface.
The peak at 37.8 nm is solely attributed to the linker that
connects the two Dronpa domains. Hereby we note that the
measured contour length increment of the linker is indeed
longer than the expected 28 nm calculated from the primary
structure. However, this conclusion is justified because we have
to include the unstructured amino acids from the two Dronpa
domains that were excluded from the previous calculation of
the Dronpa contour length. The contour length increment of
109.2 nm can, however, not be explained by a single domain
unfolding event. Since its length corresponds to the sum of one
Dronpa unfolding and the dimer interface, we suggest that this
unfolding event is linked to the rupture of the dimer and
simultaneous unfolding of one of the Dronpa domains. This is
further corroborated by the fact that the unfolding of the single
Dronpa was always observed after the event with lc = 109.2 nm
(see Figure 2a). As we will show later, it is likely that the
Dronpa domain unfolds first and consequently induces the
rupture of the interface.
In contrast, Figure 2c shows that curves with force peaks

associated with the interface, i.e., contour length increments of
37.8 and 109.2 nm, were significantly reduced after
illumination at 488 nm (see Figure 2d). Analysis of the force
extension curves reveals that 80% of the curves (69 out of 87
curves) show only the characteristic signature of the unfolding
of two Dronpa domains but no interface rupture (see Figure
2c). The remaining 18 curves showed characteristic force
distance traces similar to the ones of the associated dimers
shown in Figure 2a. This indicates that the dimer is either in an
associated or dissociated state. Potential intermediate states
with a lower rupture force, for example, in mixed dimers, where

one of the domains is in the bright and the other in the dark
state, could not be detected. If they exist, they are expected to
be relatively weak. Hence we suggest that the dimer behaves as
an effective two-state system, where the interface rupture can
only be observed using AFM if both Dronpa domains are in
the bright state and associated. This behavior would be
favorable for potential applications. It facilitates the dissocia-
tion under blue light and would compensate for the low
quantum efficiency for the switching from the bright to the
dark state (QEbd = 0.00032), which is much lower than vice
versa (QEdb = 0.37).34,42 We note that the observed two-state
behavior might be an oversimplification of the actual processes.
For example, we have no data on the fluorescence during
individual pulling experiments and thus cannot exclude that
the Dronpa domains lose their fluorescence during the
interface rupture. However, since the determined lc is in
good agreement with the expected tertiary structure of the
bright state, we assume that the domains remain functional.
In order to understand the mechanics of the dimer rupture,

i.e., the proposed simultaneous rupture of the interface and the
unfolding of the Dronpa domain, we analyzed the correspond-
ing rupture force distributions (Figure 3a). The distribution of
the interface was fitted using the Bell−Evans model.43,44 The
most probable rupture force for the selected pulling speed of
1600 nm/s was 76.9 ± 1.1 pN, which is comparable to
photochemical single molecule switches.45−47 The histogram
of the Dronpa unfolding was fitted using a normal distribution
with a most probable rupture force of 82.1 ± 1.1 pN. Hence,
the individual Dronpa domain is only slightly more stable than
the interface. Its unfolding force is comparable to other
fluorescent proteins with a β-barrel structure.28,48 Because of
the overlap of the two force distributions, it follows that
unfolding of a Dronpa domain might occur before the rupture
of the interface as was also suggested from the experiments.
Comparing the rupture force probability distributions of the

dark and bright states shown in Figure 3b, one observes that
they are slightly shifted with respect to each other. The dark
state distribution has a maximum at 77.6 ± 2.5 pN and a
standard deviation of σ = 10.3 pN. It is thus weaker and has a
broader distribution compared to the bright state with 82.1 ±
1.1 pN and σ = 9.3 pN. The lower unfolding force is in
agreement with research from Mizuno et al. where they found
that illumination of Dronpa with blue light causes flexibility of
the seventh β-strand inside the β-barrel structure, thus
probably weakening the protein fold (see Figure 1a).49 This
effect might facilitate the dissociation of the dimer if it is

Figure 3. Normalized rupture force histograms from SMFS. The distribution of the interface rupture was fitted using the Bell−Evans model. The
histograms of the Dronpa unfolding were fitted with normal distributions. (a) Distributions for the Dronpa in the bright state and for the interface.
(b) Comparison of histograms for Dronpa after illumination with 405 nm (bright state) and 488 nm (dark state). The dark state histogram was
composed of curves without an interface rupture event. It presumably contains a contribution from dissociated Dronpa domains in the bright state.
The fit parameters are given in the Supporting Information.
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switched to the dark state. The fact that there is a difference
between the two distributions is further evidence that the
fluorescent Dronpa domains remain in their bright state during
interface rupture.
In summary, we investigated light-switchable pdDronpa1.2-

linker-pdDronpa1.2 protein constructs using AFM-based
SMFS. At a retraction speed of 1600 nm/s, we found that
the interface is able to withstand a force of around 80 pN. This
is a relatively high stability, considering that the dimer is
supposed to be stabilized by hydrophobic interactions.17 It is
notable that most Dronpa domains keep their fold during
interface rupture. Comparing to studies of other β-barrel FPs,
this suggests that Dronpa dimers are likely to remain functional
and associated under the tensile stress that is prevalent under
physiological conditions.28,50 Further, the dimer could be
dissociated under illumination with 488 nm light. The interface
interaction was hardly observed in this case anymore. Taking
into account the loading rate dependence of the interface
strength, we expect a rupture force in the range 20−30 pN
under physiological conditions.51 This rupture force of the
Dronpa dimer lies above the range of forces that are typically
observed in mechanotransduction and signaling31,52−54 but is
significantly weaker than the forces found during bacterial
adhesion, which can amount to several hundred pNs.40,55,56

We thus believe that our results have strong implications for
applications in the study of mechanotransduction and
signaling. Dronpa is sufficiently strong to be used for
manipulation of the conformation of focal adhesion proteins
without the interface being pulled open. One potential
application to achieve this would be the incorporation of
Dronpa dimers into stretchable proteins such as talin that have
cryptic binding sites, which are only accessible under tension.31

Exchange of such cryptic domains with Dronpa dimers that
hold the cryptic domain in the linker region would protect this
binding site from tension forces so that reactions triggered by
binding to this site become controllable by light. Our study
further shows a new way to combine force application and
light-induced conformational switching in AFM-SMFS as a
tool by itself. This opens up the road for experiments, which
employ dynamic force probes with properties that can be
switched during the experiment.
Experimental Section. The experimental procedures for

this study were adapted from previously published proto-
cols.38,39,57,58 Detailed information is given in the Supporting
Information.
Protein Synthesis. The pdDronpa1.2-linker-pdDronpa1.2

constructs with the N-terminal ybbR-hexahistidine tag and C-
terminal XDocIII domain from R. f lavefaciens were assembled
and subcloned into peT28a plasmids via Gibson assembly. The
protein was expressed in E. coli NiCo21(DE3) cells using an
autoinduction medium and then harvested and purified
employing a standard protocol including Ni-NTA affinity
chromatography.
Sample Preparation. Cover glasses were cleaned and

silanized using (3-aminopropyl)-dimethyl-ethoxysilane. The
amine functionalized surface was subsequently conjugated with
NHS-PEG-maleimide spacers. The maleimide was reacted with
Coenzyme A in order to allow Sfp phosphopantetheinyl
transferase-mediated coupling to the ybbR tag of the Dronpa
construct.
SMFS Measurement. Single molecule force spectroscopy

was performed on a home-built TIRF-AFM.59 TIR illumina-
tion was used for switching of the Dronpa domains, which

restricted the excitation to a volume within 100 nm above the
sample surface. A glucose oxidase-based oxygen scavenging
system (25 U/mL glucoseoxidase, 1700 U/mL catalase, and
0.6% w/v glucose) was used in order to prevent bleaching of
the Dronpa domains.

Data Analysis. Force extension curves were processed and
filtered in a semiautomated way.39 Drift compensation and
peak identification was done for all curves with a tip sample
interaction. The contour length increments of individual
unfolding events were determined with the WLC model
using a persistence length of 0.4 nm.60 Specific curves were
identified by selecting the ones that showed the characteristic
rupture signature between the XDocIII handle and the CohE
pulling domain40 as well as the pdDronpa1.2 specific peak.
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