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Strep-Tactin, an engineered form of streptavidin, binds avidly to the genetically encoded peptide Strep-tag II in a manner
comparable to streptavidin binding to biotin. These interactions have been used in protein purification and detection
applications. However, in single-molecule studies, for example using atomic force microscopy-based single-molecule
force spectroscopy (AFM-SMFS), the tetravalency of these systems impedes the measurement of monodispersed data.
Here, we introduce a monovalent form of Strep-Tactin that harbours a unique binding site for Strep-tag II and a single
cysteine that allows Strep-Tactin to specifically attach to the atomic force microscope cantilever and form a consistent
pulling geometry to obtain homogeneous rupture data. Using AFM-SMFS, the mechanical properties of the interaction
between Strep-tag II and monovalent Strep-Tactin were characterized. Rupture forces comparable to biotin:streptavidin
unbinding were observed. Using titin kinase and green fluorescent protein, we show that monovalent Strep-Tactin is
generally applicable to protein unfolding experiments. We expect monovalent Strep-Tactin to be a reliable anchoring tool
for a range of single-molecule studies.

Specificity and exact control over the alignment and geometry of
molecular constituents are prerequisites to successful nano-
spectroscopy experiments. For example, in single-molecule

force spectroscopy (SMFS), the way in which the probed molecules
(for example, proteins) are tethered largely influences the exper-
imental performance as well as the reliability and interpretation of
the data obtained. We aimed to adapt molecular interactions
based on or related to avidin-like proteins to tackle this challenge
and establish a versatile anchoring tool to study any protein of inter-
est at the single-molecule level. After the discovery of avidin (A)1,2 in
1940 and streptavidin (SA)3 in 1964 as biotin sequestering proteins,
their impact in biotechnology was quickly exploited4,5. With their
outstanding femtomolar-range affinity towards biotin, the proteins
found versatile application and rapidly became a molecular link
between nano- and biotechnology, especially when the biotinylation
of samples became accessible6–8. The biotin:SA/A interaction was
the first molecular complex studied by atomic force microscopy
(AFM)-based SMFS9,10. Strep-Tactin (ST) is an engineered SA11

that specifically binds to the genetically encodable peptide
Strep-tag II (amino acid sequence SII: WSHPQFEK). SII occupies
the same binding site in SA and ST as biotin would11,12. The
SII:ST system is predominantly used in protein purification13, but
also in affinity imaging and various in vivo applications14–16.

The tetravalency in avidin-like proteins accounts for their strik-
ing avidity. Nevertheless, it can be disadvantageous to certain appli-
cations that rely on 1:1 stoichiometries. Stable, high-affinity
monomeric forms of avidin-like proteins are challenging to obtain
due to the interplay of the neighbouring subunits. Substantial
protein engineering has given rise to monomeric SA variants with
compromised binding properties17. Howarth and colleagues intro-
duced a tetrameric, but monovalent SA (monoSA) with unimpaired
biotin affinity. Key to this is the creation of a point-mutated SA con-
struct that is incapable of binding biotin18. MonoSA is used in

structural biology19,20, nanobiotechnology21,22 and in vivo detec-
tion23,24. Similarly, applications for monovalent ST (monoST)
arise, for example, in vivo, where biotin labelling is not always an
option and working with genetically encoded SII is convenient.
We introduce monoST with a single SII binding site and a unique
cysteine (Cys) that confers either specific immobilization or fluor-
escence labelling. Monovalency is achieved by reassembling a het-
erotetrameric ST, analogous to monoSA18. Remarkably, we found
the biotin-binding-deficient SA mutant equally unable to bind SII.
MonoST thus consists of one functional ST subunit with a unique
Cys residue, as well as three mutant SA subunits. Various appli-
cations of the construct, for example, as a fluorescence probe in
the detection of SII-tagged targets in cells, can be envisioned.
Here, we focus on the force-spectroscopic characterization of the
SII:monoST interaction, thus establishing the pair as a reliable
anchoring tool for various implementations of SMFS.

Other than bulk affinities, unbinding forces provide insight into
the mechanical character of an interaction. Application-dependent,
the tolerance of a complex to, for example, shear stress can be
advantageous. Here, we present dynamic SMFS data of the SII:ST
interaction obtained with an AFM, using a site-specifically immobi-
lized monoST. SII-fused green fluorescent protein (GFP) and titin
kinase (TK) constructs were probed to demonstrate the general
applicability of this system in protein unfolding experiments. This
is the first SMFS study of an SA-like protein exploiting an unam-
biguous tethering geometry. We expect monoST to find broad
application in nanobiotechnology. As a force-spectroscopy tool,
monoST offers deeper insight into, for example, the mechanism
of the force-activation of mechano-sensitive enzymes.

Both biotin:SA/A as well as SII:ST have been investigated by force
spectroscopy9,10,25–27, and very high unbinding forces between biotin
and SA/A have been reported. Owing to the tetravalency in SA/A
and the measurement geometry, pinpointing the exact rupture
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forces of the interaction between biotin and a distinct subunit of the
SA/A tetramer is challenging. In the case of ST, data from studies
using ambiguous tethering geometries suggest that the force
required to unbind SII from monoST is low compared to that in
the biotin:SA/A interaction (37 pN, ref. 28; 20–115 pN, ref. 26). In
AFM-SMFS, well-defined coupling strategies are desirable. Ideally,
the interaction between a tethering molecule attached to the canti-
lever and a handhold-tag on the sample is strong to permit applica-
bility to the various proteins to be probed29–31. A small handhold is
less likely to interfere with the native protein fold of the sample. The
SII:ST pair generally meets these requirements.

A unique Cys residue in monoST enables selective coupling
ST harbours four functional SII-binding subunits that are indistin-
guishable in their binding capacity. Selective coupling to the AFM

cantilever is not possible with this construct, and the tetravalency
impedes the measurement of monodispersed force-spectroscopy
data. We therefore engineered a monovalent ST heterotetramer with
a single Cys that can be reacted to maleimido-polyethyleneglycol
(PEG) functionalized surfaces, such as AFM cantilevers. To obtain
uniform rupture force distributions, the monoST variant accommo-
dates only one functional subunit. The remaining three subunits
were adapted from monoSA, as established previously18. The struc-
tural model in Fig. 1 illustrates the composition of monoST. The
functional subunit contains the Cys modification for selective
immobilization, guaranteeing a consistent pulling geometry and
thus homogeneous rupture data. As the Cys is located opposite
the SII binding pocket of the β-barrel in the ST monomer, the
force propagates through a single subunit (Fig. 1). If the other sub-
units were also functional, more complex pulling geometries and
force-propagation scenarios would arise.

The structural integrity and stoichiometry of reconstituted
monoST were verified by denaturing gel electrophoresis
(Supplementary Fig. 1) and a GFP pull-down assay
(Supplementary Fig. 2). The 1:3 ratio of functional-to-mutated sub-
units and accessibility of Cys were confirmed (Supplementary
Fig. 1). For the SII binding test, ST constructs (tetra-, monovalent
and fully mutated) were attached to a PEGylated glass surface via
their Cys residue. GFP was pulled down in areas with functional
ST. Increased fluorescence intensity coincided with immobilized
tetraST compared to the monoST spot. This correlates with the
anticipated SII binding capacities. No fluorescence signal, and
thus GFP-SII interaction, was observed for the completely
mutated construct. Aside from the capability of monoST to
indeed bind a single SII-tagged GFP, this also confirms ST construct
immobilization via Cys.

To determine the affinity of monoST to a SII-peptide and
compare it to commercially available tetraST (IBA), isothermal
titration calorimetry (ITC) measurements were conducted (Fig. 2).
For both monoST and tetraST, the measured Kd for SII binding
was ∼2.3 µM. This compares well to published values
(0.2/1.4 µM)11,32. The respective binding stoichiometry of four and
one binding sites was confirmed in the experiment. Slight deviations
from theoretical stoichiometries can be attributed to errors in deter-
mining the protein concentrations. Because the binding constants
are deduced from the slope of the sigmoidal fit, a discrepancy in
functional protein concentration should primarily affect the

Cy
s

  

90°

6xH
is

Strep-tag II
binding

F

F

Cys

0°

6xH
is

Strep-
bind

F

F

CysCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCy
s

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

9

Figure 1 | Model of monoST based on the crystal structures of SA and ST.
For SA, non-functional subunits adapted from protein data bank (PDB) entry
1RSU are depicted in grey, and residues N23A, S27D and S45A affecting
biotin18 as well as SII binding, when mutated, are highlighted in green. For
ST, the functional subunit adapted from PDB entry 1KL3 is depicted in red,
SII peptide is shown in yellow, the loop altered for ST compared to SA
(residues 44–47: ESAV→VTAR) is highlighted in blue, with residues in a
stick representation. The model is depicted from the top and rotated by 90°
in side view. The hexa-His-tag and Cys residue opposite the SII binding site
in the functional subunit are highlighted in cyan. Black spheres schematically
represent anchor points, with corresponding directions of applied force in
the AFM experiments. In the experiments, the probed proteins are fused to
SII either with their N- or C-terminus.
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Figure 2 | ITC measurements of ST constructs and SII peptide. Data obtained for monoST (scheme with active, Cys-modified subunit in red and mutated
subunits in grey) and tetraST (IBA, four functional subunits, red) were analysed by fitting a one-site binding model to obtain Kd, N (binding stoichiometry)
and ΔH (enthalpy). The corresponding confidence interval of fits for three (monovalent) and five (tetravalent) data sets is depicted in grey. Errors were
obtained from global fits of all data points of all respective data sets.
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stoichiometry, not the Kd. The Kd for monoST binding to GFP with
either an N- or C-terminal SII-tag, determined by ITC, is in the
range of 1 µM. The fully mutated construct did not exhibit any
measurable interaction.

Dynamic SMFS of the SII:monoST interaction
The SII:ST interaction was previously investigated in other contexts
using SMFS. Moayed and colleagues33 used a tandem repeat SII in
an optical tweezer set-up that stretched DNA to compare different
tethering methods. Tang and co-workers28 used tetraST in
AFM recognition imaging, giving an estimate of the unbinding
force between SII and ST (37 pN at 337 pN s–1 loading rate).
Kim et al.26 probed the dynamic range of the interaction, providing
SII-tagged protein fingerprint constructs (immunoglobulin-like
domain I27 and SNase) at both the surface and the cantilever.
Tethering was only achieved if an ST tetramer in solution connected
two SII samples. In this way, two differentiated rupture force distri-
butions were obtained for SII:ST unbinding. This can be attributed
to the multiple binding site occupation scenarios in the asymmetric,
dimeric substructure of the ST tetramer (four binding sites, two SII).
Similarly, immobilized tetraST offers four different interaction sites
and hence pulling geometries for SII.

Figure 3 presents the general arrangement of the present AFM
experiment as well as an exemplary force versus distance curve dis-
playing GFP unfolding and the final SII:monoST rupture. MonoST
is specifically attached to the cantilever via the unique Cys of the
functional subunit. The mutated subunits have no active means of
interaction with the sample and are bypassed from the obvious
path of force propagation. AFM-SMFS data analysis was intended
to be semi-automated for minimal bias in the analysis. Specific
SII:monoST binding and rupture events are clearly observed if
GFP is unfolded. For the evaluation of the SII:monoST interaction,
we therefore only considered curves with a single GFP unfolding
event, fully exploiting the advantage of the GFP fingerprint in the
experimental set-up and thus improving data reliability. Because
the force drops back to almost zero as soon as the GFP is unfolded,
it can be presumed that SII:monoST is not under load at that point.
Accordingly, the observed rupture force distribution for SII:monoST

unbinding at a given loading rate after initial GFP unfolding is
considered representative (Supplementary Fig. 3). Including single
rupture events where the GFP was not unfolded did not significantly
alter the measurement-derived data, but the statistics could be
biased by taking non-specific events into account.

Unbinding forces vary for N- and C-terminal SII placement
GFP constructs were probed either with N- or C-terminally fused
SII and it was found that only GFP with C-terminal SII is frequently
unfolded (Supplementary Fig. 4). The strength of the SII:monoST
interaction is thus dependent on tag placement and the pulling geo-
metry arising from it (Fig. 4a). To verify this finding we also probed
a low force fingerprint TK construct with an N-terminal SII-tag. We
observed frequent TK kinase domain unfolding, with data yields
comparable to the GFP experiment (Supplementary Fig. 5).

To evaluate the interaction and dynamic rupture force range
between SII and monoST for GFP-SII and SII-TK constructs, we
analysed representative data sets containing 8,774 and 4,933 retrac-
tion curves, respectively, for each of five distinct retraction velocities
(200, 800, 2,000, 5,000 and 10,000 nm s–1; Fig. 4). Figure 4b presents
the most probable forces and respective loading rates for the final
SII:monoST rupture and GFP unfolding in the case of construct
GFP-SII for each retraction velocity set. From a fit according to
the Bell–Evans model34,35, the width of the binding potential Δx
could be determined, yielding 0.50 nm for GFP unfolding and
0.23 nm for SII:monoST unbinding for the GFP-SII construct.
The respective koff values are 2.9 × 10−4 s−1 and 0.34 s−1. For the
SII-TK construct, Δx was determined to be twice as high
(0.45 nm) as that for the C-terminally SII-tagged sample, which
correlates well with the rupture forces dropping by a factor of
two. The value of koff is in a comparable range (0.60 s−1). The
force-spectroscopy-derived off rates for SII:monoST unbinding are
comparable to surface plasmon resonance data (0.03–0.26 s−1)32.
For the GFP-SII sample, the loading rate dependence fits for GFP
unfolding and final rupture intersect one another; in other words,
at low loading rates, the force required for GFP unfolding is more
likely to exceed the SII:monoST rupture force. With increasing
loading rates this behaviour is inverted. GFP unfolding at low
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Figure 3 | Characterization of SII:monoST as a general handhold system in AFM-based SMFS. The scheme illustrates the measurement set-up with
immobilized GFP harbouring a C-terminal SII and acting as a fingerprint domain. MonoST is represented by four spheres, three mutated, non-functional
subunits are depicted in grey, the functional one in red. Each unfolding and rupture process is illustrated according to the observed, exemplary
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loading rates is observed, owing to the inherently broader
distribution of the SII:monoST rupture force (Fig. 4c and
Supplementary Fig. 3). In the experimentally covered loading rate
range, the rupture force distribution for the final SII:monoST
rupture always coincides with the much narrower distribution for
GFP unfolding. The most probable forces for SII:monoST rupture
for the N-terminal SII construct are significantly lower than for
GFP unfolding, which is in line with the observation that GFP is
not suited to being a fingerprint when using N-terminal SII.

It is evident that the force distribution of the GFP unfolding is
much narrower than that of SII:monoST unbinding. This is to be
expected, as the potential width of the unfolding is much higher
than that of the SII:monoST rupture (Fig. 4b,c). A fit of the histo-
grams in Fig. 4c based on the standard Bell–Evans model results in
Δx of ∼0.29 and ∼0.14 nm for unfolding and unbinding, respectively.
For N-terminal SII, Δx is 0.31 nm. These values are slightly lower
than those determined from the force loading rate dependence
(Fig. 4b), for which only the peak positions of the force distributions
are analysed. The narrow distribution of GFP unfolding forces
suggests that instrument drift and cantilever aging are negligible
(also compare Supplementary Fig. 7). The width of the SII:monoST
rupture force histograms is thus inherent to the narrow binding
potential and, as such, is a genuine property of this molecular pair
in the given pulling geometry (C-terminal SII). Notably, this differs
for an N-terminal SII, where lower unbinding forces and increased
potential widths correlate with the broadened binding potential.

To verify the selectivity and reliability of the tethering established
here, several control experiments were performed. SII-tagged GFP
was compared to GFP fused with a GCN4-tag in AFM-SMFS.
Significant sample interaction was only observed in probed areas

where GFP-SII was immobilized (Supplementary Fig. 6). When
implementing an ST with four non-functional subunits, no signifi-
cant interactions could be observed. The tethering specificity was
also confirmed by competition, by adding 1 mM desthiobiotin
during data collection. After adding the competitor, SII:monoST
interactions became less abundant by far (Supplementary Fig. 6).
This possibility of competing with the interaction is key to the
system’s use in affinity purification. The effect could also be relevant
to other applications with monoST, for example, in the targeted
release of SII-tagged ligands, as previously demonstrated with a
cell-membrane-penetrating ST variant36.

Previously, a rupture force distribution exhibiting two distinct
maxima had been postulated for the SII:ST interaction (C-terminal
SII constructs) by Kim and co-authors26. We did not observe two
force regimes for the bond rupture between monoST and either
SII-tagged GFP or TK. Using a selectively anchored monoST to
bind a single SII exposed by the GFP or TK molecules on the
surface eliminates the issue of inhomogeneous rupture force distri-
butions. By offering only one binding site for the SII in an entirely
unambiguous attachment geometry, monodisperse unbinding force
distributions are to be expected.

We compared AFM-based force spectroscopy measurements
using either specifically immobilized tetra- or monoST. A clear
increase in single GFP-unfolding events as well as overall data
yield was observed when using monoST (Supplementary Fig. 7
and Supplementary Table 1). TetraST measurements yielded
about 2% single GFP-unfolding events, but about 8% were obtained
for monoST. Using monoST proved much more reliable. With
tetraST, periods of sparse interaction during the typically ∼14 h
measurements were observed, and cantilever wear was more
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Figure 4 | Comparison of SII:monoST unbinding forces depending on the placement of SII on the termini of the probed protein. a, Schematic of monoST
with SII occupying the functional binding site (based on PDB: 1KL3). The C-terminal part of SII is buried more deeply in the binding site than the N-terminal
part. Generally, the two different attachments and thus pulling geometry scenarios can be expected to vary the SII:monoST unbinding forces. b, Dynamic
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SII:monoST rupture for a GFP construct with C-terminal SII (filled circles) in comparison to GFP unfolding (open green triangles), as well as for the
SII:monoST rupture for a TK construct with N-terminal SII (open diamonds) are shown. Most probable rupture forces were obtained by fitting the rupture
force histograms of each retraction velocity set with the Bell–Evans model. Loading rates were obtained by Gaussian fitting of values derived from the slope
of individual extension traces. Only force–distance curves with a single GFP unfolding event or TK unfolding fingerprint were considered and evaluated.
Δx and koff were obtained by fitting data points according to the Bell–Evans model. The SII:monoST interaction is about half as strong at comparable loading
rates when SII is N-terminally fused to the probed protein (here TK) compared with the C-terminal tag (here GFP). Accordingly, Δx is doubled for the
weaker bond. c, Exemplary rupture force histograms for SII:monoST rupture at 800 nm s–1 retraction velocity in the AFM experiment. Top: data for the final
rupture of C-terminally SII-tagged GFP (grey bars, solid line) and GFP unfolding (dashed green line). Bottom: data for the SII:monoST rupture of the
N-terminally tagged TK construct (open bars, solid line). The presence of a few high force rupture events in the case of SII-TK may be attributed to a
negligible number of unspecific attachment events via the Ig-like domains in the construct. Most probable rupture forces and Δx were derived from fitting
data according to the Bell–Evans model.

ARTICLES NATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2015.231

NATURE NANOTECHNOLOGY | ADVANCE ONLINE PUBLICATION | www.nature.com/naturenanotechnology4

© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nnano.2015.231
http://www.nature.com/naturenanotechnology


drastic (Supplementary Fig. 7). We attribute this effect to tearing of
the tetrameric ST structure. This is in agreement with former SMFS
studies on the disruption of the SA dimer interface, which was
found to occur at ∼100 pN (ref. 37). If high forces need to be
probed, as in our exemplary GFP-unfolding experiment, monoST
is a superior choice to conventional tetraST. Notably, because the
mean rupture force for the (C-terminal)SII:monoST bond, even at
low loading rates, still exceeds 50 pN, it can be assumed that the
handhold pair is applicable to a broad range of mechanically
stressed coupling reactions, such as in protein force
spectroscopy studies.

Comparing the SII:monoST interaction strength with that of
biotin:SA/A, we find that in a certain loading rate regime, the
forces are in the same range25. The nonlinearity that is observed
for the biotin:SA/A rupture, which is representative of the presence
of more than one energy barrier along the unbinding coordinate,
was not found for the SII:monoST interaction. This may be due
to the limited loading rate range covered in the present experiments.
Considering the altered conformation in the loop proximal to the
ligand binding pocket in ST compared with SA, differences in the
unbinding energy landscape would also not be unexpected38. The
discrepancy in equilibrium stability versus rupture force between
the two complexes biotin:SA and SII:monoST probably originates
from the minor change in the loop region on top of the binding
pocket. For SA, this loop undergoes substantial conformational
changes upon biotin binding to close up the binding site like a
lid. This movement is not observed in ST upon SII-binding.
Furthermore, this loop closure has been concluded to be partially
responsible for the outstanding off rates, and thus for the Kd value
found for biotin:SA39. Additionally, SA variants such as the so-
called ‘traptavidin’ exist, in which the introduction of slight altera-
tions in this loop region lead to a stabilized closed form and thus
even lower dissociation rate constants40. As the unbinding force is
dominated by the primary interactions between ligand and
binding pocket, the ‘lid closure effect’ may have little influence.
Thus, the mode of forced ligand unbinding would be comparable
in biotin:SA and SII:ST, despite their vastly differing equilibrium
stabilities. In addition, biotin or SII affinity may be influenced by
the properties of the molecule to which they are attached41. It is
worthwhile noting that none of the hitherto published biotin:
SA/A force spectroscopy studies used a completely specific attach-
ment strategy for either binding partner (for example, biotinylated
bovine serum albumin or microspheres, as well as non-specifically
attached SA). While not exhibiting any obvious disadvantages
over biotin, SII represents an attractive alternative to probe proteins
in a comparable force range. In many instances, the genetically
encoded peptide tag is preferable to a biotin modification, which
requires additional coupling and purification steps after protein
expression. Another advantage of using SII as a handhold rather
than a biotin modification lies in their respective affinities to ST
and SA. Their Kd values differ tremendously (micromolar for SII:
ST versus femtomolar for biotin:SA)11,18,41. Thus, when probing
SII-tagged protein the cantilever is less prone to get clogged than
when using biotinylated protein, as even trace amounts of free
biotin or non-covalently coupled biotinylated protein can block
the cantilever, nearly irreversibly.

Conclusions
We have established a robust tethering strategy applicable to and
adaptable by a broad range of nanotechnology applications. Such
stable biomolecular complexes are needed in AFM-based or other
force spectroscopy techniques. The use of genetically encoded SII
as a handhold is superior to those that require post-translational
modification (for example, biotin or digoxigenin). The strength of
its interaction with monoST renders the pair an excellent choice
for such applications. Remarkably, the difference in binding

strength when using SII on either the N- or C-terminus could
only be identified as a consequence of the high specificity of our
tethering system and the superb understanding and control its
pulling geometry provides. As this renders the SII:monoST inter-
action a tunable rupture force system, other implementations may
arise, for example, in ‘single-molecule cut & paste’42. Finally, the
modification of ST to hold a unique immobilization and single func-
tional SII binding site boosts the robustness and applicability of the
system. Fluorescently labelled monoST may be used, for example,
for super-resolution microscopy, exploiting the advantage of the
1:1 stoichiometry. Other applications, such as in structural biology
and more general fluorescence imaging and tracking, should also
be feasible, as the extremely high affinity found for biotin:SA is
not a general necessity for such implementations. MonoST builds
on the prevalence and popularity of SA and ST and therefore
enables the probing of readily available protein constructs with
improved specificity and stability.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
A full description of experimental details can be found in the Supplementary
Information. In brief, ST and mutant SA (deficient in SII binding) constructs were
cloned into pET vectors (Merck Millipore), if applicable with a hexa-His-tag and Cys
or without for the non-functional subunits that were not meant to attach to the
AFM-cantilever surface. ST and mutant SA with and without the extra Cys were
expressed separately in E. coli BL21(DE3)-CodonPlus. The constructs formed
inclusion bodies that were isolated as described previously18,43.To reconstitute
monoST and to provide a 1:3 ratio of functional ST to non-functional SA in the final
tetramer, inclusion bodies were solubilized in 6 M guanidinium chloride and then
mixed in a 1:10 ratio before refolding and purification, which was accomplished by
means of the His-Tag on the Cys-modified subunit. Stoichiometry and the binding
affinity between monoST and an SII-peptide were analysed by ITC. To characterize
the SII:monoST interaction and as a proof of general applicability of the pair, we
used it with GFP and TK in a dynamic AFM-SMFS experiment. Passivation of the
sample surfaces, here the glass coverslip and the AFM cantilever, was ensured by
heterobifunctional PEG spacers used for specific sample immobilization44,45.
Covalent and site-selective attachment of the protein to be probed was achieved
using the ybbR-tag/Sfp-synthase system, which has been successfully used in recent
force spectroscopy measurements46–48. This reaction is highly efficient with N- or
C-terminally ybbR-tagged proteins. Cys-modified monoST was immobilized on
maleimido-PEG 5000 (Mw = 5,000 Da) functionalized BioLever Mini cantilevers
(Olympus)49. One GFP construct harboured an N-terminal ybbR-tag for surface
immobilization and a C-terminal SII for recognition by the monoST-decorated
cantilever tip. For control measurements, a construct harbouring a GCN4-tag
instead of SII was used. GFP was attached to a PEG5000-coenzymeA (CoA)
modified glass surface via the ybbR-tag (Sfp catalysed)47. Protein coupling to the
CoA/PEG-surface was achieved under saturating conditions, so the density of
coupled GFP was adjusted by using a fraction of non-reactive CH3-PEG5000.

The ratio of maleimido(CoA)-PEG5000 to CH3-PEG5000 was chosen such that
the surface density gave rise to a high yield of single-tethering event curves. A
fraction of curves devoid of any interaction is acceptable for the sake of improved
automated data sorting, evaluation and to obtain fewer multi-event curves. GFP
constructs were cloned with their respective tags (ybbR and SII or GCN4-tag) into
pGEX vectors (GE Healthcare) and expressed in E. coli BL21(DE3)-CodonPlus
(Agilent Technologies). Purification was achieved by GST- and His-tag based
affinity chromatography. The GST-tag was removed from the final construct.
Constructs with an N-terminal SII-tag, SII-GFP-ybbR and a titin kinase construct
(SII-TK-ybbR) were implemented accordingly in force spectroscopy experiments.
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Preparation	
  of	
  the	
  Strep-­‐tagII	
  Fusion	
  Constructs	
  
	
  
A	
  superfolder	
  Green	
  Fluorescent	
  Protein	
  (GFP)2	
  construct	
  was	
  designed	
  to	
  harbour	
  
an	
  N-­‐terminal	
  ybbR-­‐tag	
  (DSLEFIASKLA)3, 4	
  and	
  a	
  C-­‐terminal	
  Strep-­‐tagII	
  
(SAWSHPQFEK	
  =	
  SII).	
  The	
  GFP	
  gene	
  was	
  PCR	
  amplified	
  from	
  a	
  synthetic	
  template	
  
(Lifetechnologies,	
  Paisley,	
  UK)	
  with	
  primers	
  containing	
  the	
  respective	
  tag	
  coding	
  
sequences.	
  The	
  construct	
  was	
  cloned	
  into	
  a	
  modified	
  pGEX6P2	
  vector	
  (GE	
  
Healthcare,	
  Little	
  Chalfont,	
  UK)	
  that,	
  in	
  addition	
  to	
  the	
  GST-­‐tag,	
  harbours	
  a	
  6xHis-­‐
Tag	
  and	
  a	
  TEV-­‐Protease	
  cleavage	
  site,	
  by	
  means	
  of	
  NdeI	
  and	
  XhoI	
  restriction	
  sites.	
  
The	
  resulting	
  fusion	
  protein	
  (ybbR-­‐GFP-­‐SII)	
  harboured	
  a	
  GST-­‐	
  as	
  well	
  as	
  a	
  6xHis-­‐tag	
  
and	
  was	
  expressed	
  in	
  E.coli BL21(DE3)-CodonPlus cells (Agilent Technologies, Inc., 
Santa Clara, CA, USA). For this, 1 l of SB medium was inoculated with 10 ml of an 
overnight culture and grown at 37 °C. When an OD600 of 0.7 had been reached, over 
night expression at 18 °C was induced by adding 0.25 mM IPTG. Cells were lysed in 50 
mM Tris HCl pH 7.5, 150 mM NaCl, 2 mM DTT, 5% Glycerol, by sonification. The 
ybbR-GFP-SII construct was obtained in the soluble fraction and purified by Glutathione 
affinity chromatography on a GSTrap column (GE Healthcare, Little Chalfont, UK). 
During over night incubation with PreScission protease the GST-tag was removed and 
the protein further purified by Ni-IMAC over a HisTrap HP column (GE Healthcare, 
Little Chalfont, UK). The purified protein was dialyzed against 50 mM Tris HCl pH7.5, 
150 mM NaCl, 2 mM DTT, 5% Glycerol and then stored at -80 °C at a final 
concentration of ~12 µM. The control construct ybbR-GFP-GCN4 was prepared 
accordingly5. Further, a SII-GFP-ybbR construct and a Titin Kinase construct with 
identical tag placement (SII-TK-ybbR) were prepared and purified by Ni-IMAC and in 
addition size exclusion chromatography for the TK construct. The TK construct was 
expressed in insect cells. All proteins were used at comparable concentrations for surface 
conjugation. 
 
 
Preparation of Monovalent Strep-Tactin (monoST) 
 
Two Strep-Tactin (ST) constructs were designed: one harbouring an intact SII binding 
site and an N-terminal 6xHis-tag as well as a unique Cysteine (Cys) residue. The other 
one resembled a Streptavidin variant that had formerly been shown to not bind biotin 
anymore and still assemble in the tetrameric structure6. Both ST variants were PCR 
amplified from synthetic templates (Centic, Heidelberg, Germany) and cloned into pET 
vectors. Expression was, similar to the GFP construct, achieved in 300 ml and 700 ml SB 
cultures of transformed E. coli BL21(DE3)-CodonPlus, respectively. The harvested cell 
pellets were treated separately in the beginning and dissolved in 4 ml per 1 g cell mass B-
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PER. After addition of Lysozyme and DNase cells were fully lyzed by sonification. 
Insoluble cell debris as well as inclusion bodies were sedimented by centrifugation at 
20000 g for 30 min. After discarding the supernatant the inclusion body containing pellet 
was again resuspended in 4 ml / 1 g washing buffer (30 mM Tris HCl pH 7.5, 150 mM 
NaCl and 0.1% TritonX-100). Centrifugation and washing of the inclusion bodies were 
repeated four times, when the supernatant appeared fairly cleared. The inclusion bodies 
containing the Cys-modified functional ST were then dissolved in 6 ml solubilization 
buffer (20 mM Tris HCl pH 7.5, 6 M Guanidinium HCl), the ones containing the non-
functional and untagged variant in 12 ml. After determining the protein concentration in 
the solubilized fractions by measuring the absorbance at 280 nm, the entire amount of 
non-functional ST was used and mixed with the volume equivalent of a tenth in mass of 
the latter with functional 6xHis-mono-Cys-ST. The mixed solubilized protein was again 
subjected to centrifugation for 30 min at 20000 g and the supernatant with the unfolded 
ST constructs collected. To accomplish refolding the mixture was slowly and drop-wise 
added to a stirred reservoir of 500 ml 1x PBS and 10 mM β-Mercaptoethanol (the use of 
DTT or the more expensive TCEP as reducing agents is also possible, if compatible with 
the Ni2+-column matrix used for the following His-Tag affinity purification step). The 
mixture was stirred over night at 4 °C to maximize refolding of the mixed ST. Next, the 
500 ml protein sample was filtered through a cellulose filter to remove precipitate and 
then loaded onto a 5 ml HisTrap FF column (GE Healthcare) for Ni-IMAC purification. 
Elution of the reassembled monoST was achieved by a linear gradient from 10 to 300 
mM Imidazole (in 1x PBS, 10 mM β-Mercaptoethanol). Elution fractions were analysed 
in gel electrophoresis. If the samples were not heated in gel loading dye prior to loading 
them onto the gel the protein remained a tetramer during gel electrophoresis. For samples 
that were incubated at 95 °C for 5 min in gel loading dye, the subunits were separated 
and subunits migrated separately as monomers (Supplementary Fig. S1). Thus, the 
stoichiometry of functional (slightly larger due to the 6xHis-tag and additional Cys) and 
non-functional (non-tagged) ST could be assessed. As intended by using a 10fold excess 
of non-functional, non-tagged construct, the ratio of functional to non-functional ST 
appears to be 1:3 (Supplementary Figure S1). Samples were pooled after elution from the 
affinity column and dialyzed against 1x PBS. As free reducing agent in the storage buffer 
would later on interfere with Mal-PEG immobilization of the monoST, bead-immobilized 
TCEP was added to the protein inside the dialysis tubing. ST was long-term stored at 4 
°C in presence of TCEP beads. Generally, yields of 20 mg of purified protein per 1 l (300 
ml for expression of His-tagged, functional protein, which is the yield affecting 
constituent) culture could be obtained. 
For control experiments a tetramer harbouring a non-functional 6xHis-tagged and Cys-
modified subunit in addition to the three unmodified non-functional ones was prepared 
accordingly (Supplementary Figure S1). Further, a variant containing four functional 
subunits with one harbouring a 6xHis-tag and a Cys was produced for comparison. 

© 2015 Macmillan Publishers Limited. All rights reserved



S4	
  
	
  

Typically, final protein concentrations ranged around 14 µM. To verify Cys accessibility 
for cantilever immobilization, the ST constructs were reacted to Maleimido-ATTO647N 
and analysed by gel electrophoresis. As expected only the large 6xHis and Cys containing 
subunit is labelled (Supplementary Fig. S1) and reactivity towards surface coupled PEG-
Maleimide should be comparably efficient. 

 
Supplementary Figure S1. SDS PAGE gel of refolded ST variants. MonoST and the non-
functional variant were successfully refolded to form a heterotetramer (lanes 4/5 and 6/7, not 
heated and treated at 95 °C for 5 min in loading buffer, respectively) consisting of non-functional 
ST and functional 6xHis-Cys-ST or non-functional 6xHis-Cys-ST, respectively, in an estimated 
3:1 ratio. For comparison, lanes 8 and 9 show the commercially available tetraST (IBA, 
Göttingen) homotetramer (not heated - 8; heat treated - 9). Cys-accessibility was tested by 
reacting Maleimide-ATTO647N to the refolded and purified hetero-tetramers (lane 1: 
monovalent, lane 2: non-functional mutant – consisting of four mutated subunits, one harbouring 
an extra Cys and 6xHis-Tag ). Functional subunits are depicted in red, mutated ones in grey, the 
additional Cys residue as well as the 6xHis-Tag are highlighted in cyan. 
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Strep-Tactin Immobilization and ybbR-GFP-SII Pull-down 
 
As a control, modified ST constructs tetraST, monoST and the completely mutated 
variant that is supposedly not capable of binding the SII, were immobilized on the same 
PEG-Maleimide functionalized glass surface (same chemistry as used for the cantilever 
coupling). After washing off unreacted protein, SII-tagged GFP was incubated on the 
surface for 15 min. After rinsing off unbound GFP, the fluorescence on the surface was 
evaluated (Supplementary Fig. S4.). Whereas for the spot with the binding pocket mutant 
no signal was detected (max. signal: ~2000 counts, background range), the tetraST spot 
yielded a GFP signal (max. signal:  60000 counts) that was higher than at the spot were 
monoST (max. signal: ~15000 counts) was immobilized that also showed GFP binding 
(Supplementary Fig. S2). 
 

 
Supplementary Figure S2. Cys-modified ST variants were coupled to the same glass surface 
via PEG-Maleimide and incubated with ybbR-GFP-SII. The fully non-functional ST is not 
capable of binding SII-tagged GFP, whereas the monovalent construct appears to bind less GFP 
molecules than the tetravalent construct. Functional subunits are depicted in red, mutated ones in 
grey, the additional Cys residue as well as the 6xHis-Tag are highlighted in cyan. 
 
	
  

C

C

C

© 2015 Macmillan Publishers Limited. All rights reserved



S6	
  
	
  

 
 
Affinity Measurements 
 
To avoid background effects from varying protein storage buffers, all protein samples 
were desalted and the buffer exchanged to the respective measurement buffer in 
MicroSpin columns (Thermo Scientific). The peptides were dissolved in 1x PBS. 
Affinities were determined by Isothermal Titration Calorimetry on a MicroCal iTC200 
instrument (Malvern, Worcestershire, UK). ST constructs were provided in a volume of 
250 µl in the measurement cell (IBA ST at 12 µM and monoST at 56 µM). SII peptide 
(IBA, Göttingen) was titrated in from a stock concentration of 440 µM and 630 µM 
respectively, to account for the difference in binding stoichiometry between the ST 
variants (4 vs. 1 binding site). Data were fit with a one-site binding model in OriginPro 
(OriginLab, Northampton, UK) to obtain Kd values as well as the binding stoichiometry. 
We further tried to measure affinities in more sensitive fluorescence polarization assays. 
However since the fluorophore on the SII peptide seems to increase the affinity to ST and 
due to observed unspecific interactions of ST with glass and plastic ware those 
measurements were not considered reliable enough. One conclusion could still be drawn 
from these experiments: While we observed binding for the functional ST variants the 
fully mutated construct did not seem to significantly interact with the labelled peptide 
even at high concentrations (much higher than for the functional constructs). Thus, proper 
determination of the Kd with ITC was not considered feasible. 
 
 
Preparation of Cantilevers 
 
Cantilevers (BioLever Mini obtained from Olympus, Japan) were oxidized in a UV-
ozone cleaner (UVOH 150 LAB, FHR Anlagenbau GmbH, Ottendorf-Okrilla, Germany) 
and silanized by soaking for 2 min in (3-Aminopropyl)dimethylethoxysilane (ABCR, 
Karlsruhe, Germany; 50% v/v in Ethanol). Subsequently, they were washed in toluene, 2-
propanol and ddH2O and dried at 80 °C for 30 min. After incubating the cantilevers in 
sodium borate buffer (pH 8.5), a heterobifunctional PEG crosslinker7, 8 with N-hydroxy 
succinimide and maleimide groups (MW 5000, Rapp Polymere, Tübingen, Germany) 
was applied for 30 – 60 min at 25 mM in sodium borate buffer. Afterwards, monoST was 
bound to the cantilevers at room temperature for 1 h. Finally the cantilevers were washed 
and stored in 1x PBS. 
 
 
Preparation of Glass Surfaces 
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Glass cover slips were sonicated in 50% (v/v) 2-propanol in ddH20 for 15 min and 
oxidized in a solution of 50% (v/v) hydrogen peroxide (30%) and sulfuric acid for 30 
min. They were then washed in ddH2O, dried in a nitrogen stream and then silanized by 
soaking for 1 h in (3-Aminopropyl)dimethylethoxysilane (ABCR, Karlsruhe, Germany, 
1.8% v/v in Ethanol). Subsequently, they were washed twice in 2-propanol and ddH2O 
and dried at 80 °C for 40 min. After incubation in sodium borate buffer (pH 8.5), a 
heterobifunctional PEG crosslinker with N-hydroxy succinimide and maleimide groups 
(MW 5000, Rapp Polymere, Tübingen, Germany) mixed 2:1 with mono-functional NHS-
PEG-CH3  (MW 5000, Rapp Polymere, Tübingen) was applied for 1 h at 25 mM in 
sodium borate buffer. After rinsing the surfaces, 20 mM Coenzyme A (Calbiochem) in 
coupling buffer (sodium phosphate, pH 7.2) was added on top of the surfaces to react 
with the maleimide groups. Protein was coupled to the surface after removal of residual 
CoA by adding a mix of e.g. 8 µl 11 µM ybbR-GFP-SII, 1 µl Sfp-Synthase (133 µM)5, 9 
and 1 µl of 10x reaction buffer (100 mM Tris pH 7.5, 100 mM MgCl2) and incubation 
for 2 h at room temperature. Surfaces were rinsed in 1x PBS prior to the measurement to 
prevent unbound protein to block the cantilever. 
It should be noted, that it is also possible to couple protein from cruder samples or cell 
lysates directly to the surface, as the ybbR/CoA/Sfp chemistry is highly selective and 
reactive9. Purification of protein samples utilizing the anyway attached SII is also 
possible. Generally, residual biotin or desthiobiotin from expression media, cell extract or 
elution buffer should get disposed of by thoroughly rinsing the surface after protein 
immobilization. Trace amounts of these competitors can be further scavenged by addition 
of Neutravidin to the measurement buffer, that sequesters biotin but does not interact with 
Strep-Tactin10. 
 
 
AFM Measurements 
 
A custom built AFM head and an Asylum Research MFP3D controller (Asylum 
Research, Santa Barbara, USA), which provides ACD and DAC channels as well as a 
DSP board for setting up feedback loops, were used. Software for the automated control 
of the AFM head and xy-piezos during the force spectroscopy measurements was 
programmed in Igor Pro (Wave Metrics, Lake Oswego, USA). BioLever Mini (BL-
AC40TS) cantilevers (Olympus, Japan; 10 nm nominal tip radius, sharpened probe) were 
chemically modified (see Preparation of Cantilevers) and calibrated in solution using the 
equipartition theorem11,12. Dynamic force spectroscopy data was collected employing five 
different retraction velocities: 200, 800, 2000, 5000 and 10000 nm/s. To minimize 
unspecific interaction and since the on-rate of SII:monoST is in the time-scale of contact 
between probe and sample surface, no dwell times were employed. The contact time 
between functionalized AFM probe and the protein surface (ranging between ~5 and 70 
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ms) is therefore only determined by the retraction velocity, approach velocity (3000 
nm/s), the indentation force (180 pN) and the substrate stiffness. The surface is sampled 
in steps of 100 nm distance. 
Typically datasets containing between 5000 and 9000 force vs. distance curves per 
retraction velocity were collected. Curves were sorted by employing certain force and 
distance cut-­‐offs, mainly restricting the low force regime to minimum 30 pN (for GFP-
SII), as otherwise automated data evaluation was hampered by noise peaks. For SII-TK 
data was selected by correlating the recurring, characteristic TK kinase unfolding 
fingerprint. Rupture forces were evaluated from AFM force vs. distance curves utilizing a 
quantum mechanically corrected WLC model13 (force spectroscopy data was evaluated in 
Python 2.7). Loading rates of individual unfolding/rupture events were determined by 
fitting the respective slope prior to the force peak (last 3 nm). For GFP constructs, in the 
final evaluation only curves with a single unfolded GFP, i.e. two peaks (1st: GFP-
unfolding, 2nd: SII:monoST rupture) were considered. A distinction between specific and 
unspecific rupture events for single peak curves was not feasible. This is also not 
considered crucial, as the GFP fingerprint acts as an internal selection criterion and 
quality control. It can be assumed, that the force nearly drops back to zero when GFP is 
unfolded and that the SII:monoST interaction does not memorize the afore-sensed force. 
It also does not undergo irreversible or slowly reversing conformational changes under 
force load (otherwise repetitive probing of different molecules on the surface with the 
same monoST molecule on the cantilever would not be feasible). Generally, 
characteristic fingerprints should be obtained when using the SII:monoST pair to 
characterize arbitrary proteins concerning their unfolding behaviour. 
Final rupture forces for each velocity set were binned to histograms that were fitted with 
the Bell-Evans model14, 15 yielding the most probable rupture force (Supplementary Fig. 
S3). The average loading rate was determined by a Gaussian fit of the binned distribution 
for each retraction velocity. The most probable rupture force vs. loading rate dependency 
could be fitted according to the standard Bell-Evans model (f(r)=(kBT/∆x)ln(∆x 
r/kBTkoff)) to yield the width of the binding potential ∆x and the dissociation rate koff at 
zero force for the SII:monoST interaction.  
When	
  using	
  GFP	
  as	
  a	
  fingerprint,	
  due	
  to	
  the	
  distribution	
  of	
  rupture	
  force	
  
probabilities,	
  we	
  found	
  a	
  drop	
  in	
  the	
  amount	
  of	
  observed	
  GFP-­‐unfolding	
  events	
  at	
  
low	
  loading	
  rates	
  (Supplementary	
  Fig.	
  S3,	
  compare	
  N=140	
  at	
  200	
  nm/s	
  and	
  N=706	
  
at	
  10000	
  nm/s),	
  which	
  should	
  not	
  affect	
  the	
  derived	
  values	
  for	
  the	
  most	
  probable	
  
rupture	
  force.	
  In	
  support	
  of	
  this,	
  the	
  rupture	
  force	
  histograms	
  are	
  clearly	
  
monodisperse	
  and	
  do	
  not	
  exhibit	
  any	
  sudden	
  cut-­‐off	
  in	
  the	
  low	
  force	
  regime	
  that	
  
would	
  indicate	
  loss	
  of	
  substantial	
  data	
  (Fig.	
  4C,	
  Supplementary	
  Fig.	
  S3). 
We further tested, whether placing SII on either terminus of the protein in question alters 
the SII:ST unbinding behavior. When comparing N- and C-terminally labeled GFP, we 
indeed observed significantly fewer GFP unfolding events when using an N-terminally 
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SII-tagged construct (Supplementary Fig. S4). For comparison, only considering single 
GFP unfolding events, we found 8.3	
  %	
  out	
  of	
  3250	
  curves	
  total	
  for	
  ybbR-­‐GFP-­‐SII	
  and	
  
0.4	
  %	
  GFP	
  unfolding	
  events	
  out	
  of	
  3840	
  curves	
  in	
  total	
  SII-­‐GFP-­‐ybbR.	
  Analysis	
  of	
  the	
  
loading	
  rate	
  dependence	
  of	
  the	
  final	
  rupture	
  force	
  was	
  not	
  feasible	
  for	
  the	
  SII-­‐GFP-­‐
ybbR	
  data	
  due	
  to	
  the	
  low	
  number	
  of	
  events.	
  With	
  the	
  reduced	
  rupture	
  force	
  between	
  
N-­‐terminally	
  fused	
  SII	
  and	
  monoST,	
  GFP	
  turned	
  out	
  to	
  be	
  too	
  robust	
  to	
  act	
  as	
  a	
  
reliable	
  fingerprint	
  in	
  aid	
  of	
  distinction	
  of	
  specific	
  from	
  unspecific	
  interactions.	
  I.e.	
  
the	
  rupture	
  force	
  distributions	
  inherent	
  to	
  GFP	
  unfolding	
  and	
  to	
  the	
  SII:monoST	
  
interaction	
  appear	
  to	
  not	
  overlap	
  sufficiently	
  in	
  this	
  specific	
  case	
  of	
  an	
  N-­‐terminal	
  
SII	
  fusion.	
  
As	
  GFP	
  unfolds	
  at	
  fairly	
  high	
  forces	
  around	
  100	
  pN	
  it	
  can	
  be	
  considered	
  a	
  rather	
  
robust	
  fingerprint.	
  Thus,	
  when	
  studying	
  other	
  proteins	
  of	
  interest	
  they	
  might	
  exhibit	
  
specific	
  unfolding	
  patterns	
  at	
  much	
  lower	
  forces.	
  
As	
  another	
  example	
  and	
  to	
  utilize	
  a	
  specific	
  fingerprint	
  in	
  a	
  lower	
  force	
  range,	
  we	
  
studied	
  a	
  Titin	
  Kinase	
  (TK)	
  construct.	
  In	
  this	
  case	
  SII	
  was	
  also	
  placed	
  N-­‐terminally	
  
and	
  the	
  ybbR-­‐tag	
  fused	
  to	
  the	
  C-­‐terminus.	
  We	
  could	
  show	
  that	
  the	
  tethering	
  strategy	
  
works	
  equally	
  well	
  for	
  this	
  protein	
  sample.	
  Data	
  yields	
  compare	
  to	
  the	
  GFP	
  
experiment	
  and	
  the	
  specificity	
  of	
  SII:monoST	
  as	
  handhold	
  pair	
  is	
  evident	
  as	
  we	
  
frequently	
  see	
  the	
  low	
  force	
  kinase	
  domain	
  unfolding	
  fingerprint	
  (Supplementary	
  
Fig.	
  S5).	
  In	
  addition,	
  this	
  experiment	
  shows	
  that	
  SII	
  can	
  be	
  utilized	
  as	
  either	
  N-­‐	
  or	
  C-­‐
terminal	
  fusion,	
  although	
  rupture	
  forces	
  are	
  decreased	
  for	
  N-­‐terminal	
  SII	
  
(Supplementary	
  Fig.	
  S4	
  and	
  Fig.	
  4).	
  Supplementary	
  Figure	
  S5	
  depicts	
  a	
  
superposition	
  of	
  1730	
  TK	
  unfolding	
  curves.	
  While	
  the	
  Kinase	
  domain	
  is	
  frequently	
  
fully	
  unfolded,	
  we	
  rarely	
  observe	
  Immunoglobulin	
  (Ig)-­‐like	
  domain	
  unfolding.	
  This	
  
is	
  in	
  agreement	
  with	
  the	
  ~200	
  pN	
  known	
  to	
  be	
  required	
  for	
  Ig-­‐domain	
  unfolding,	
  
which	
  exceeds	
  the	
  unbinding	
  force	
  distribution	
  for	
  SII:monoST	
  rupture.	
  Further,	
  
this	
  emphasizes	
  the	
  capacity	
  and	
  specificity	
  of	
  the	
  system,	
  as	
  frequent	
  Ig-­‐like	
  
domain	
  unfolding	
  should	
  be	
  only	
  occurring	
  when	
  pulling	
  non-­‐specifically.	
  
 

© 2015 Macmillan Publishers Limited. All rights reserved



S10	
  
	
  

 
Supplementary Figure S3. Evaluation of AFM SMFS data for the interaction between GFP-
SII and monoST. Only force-distance curves with a single GFP unfolding event were considered 
and evaluated. Rupture force histograms for SII:monoST rupture (grey bars and solid line) and 
GFP unfolding (dashed green line) at different retraction velocities in the AFM experiment are 
depicted. 
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Supplementary	
  Figure	
  S4.	
   Comparison	
  of	
  force	
  spectroscopy	
  data	
  with	
  respect	
  to	
  Strep-­‐
tag	
  II	
  attachment	
  at	
  either	
  N-­‐	
  or	
  C-­‐terminus	
  of	
  GFP.	
  Only	
  with	
  a	
  C-­‐terminal	
  Strep-­‐tag	
  II	
  high	
  
enough	
  rupture	
  forces	
  between	
  the	
  tag	
  and	
  the	
  monoST	
  at	
  the	
  cantilever	
  are	
  achieved	
  to	
  
frequently	
  unfold	
  GFP.	
  Data	
  was	
  collected	
  with	
  the	
  same	
  cantilever.	
  Events	
  obtained	
  at	
  a	
  
retraction	
  velocity	
  of	
  5000	
  nm/s	
  are	
  shown.	
  	
  Evaluating	
  data	
  from	
  five	
  different	
  retraction	
  
velocities	
  yields:	
  8.3	
  %	
  GFP	
  unfolding	
  events	
  out	
  of	
  3250	
  curves	
  total	
  for	
  ybbR-­‐GFP-­‐SII	
  and	
  
0.4	
  %	
  GFP	
  unfolding	
  events	
  out	
  of	
  3840	
  curves	
  in	
  total	
  SII-­‐GFP-­‐ybbR.	
  

Supplementary	
  Figure	
  S5.	
   Superposition	
  of	
  1730	
  unfolding	
  force	
  vs.	
  distance	
  curves	
  of	
  a	
  
Titin	
  Kinase	
  construct	
  (SII-­‐I27-­‐I27-­‐Fn-­‐Kinase-­‐I27-­‐I27-­‐ybbR;	
  I27	
  –	
  Ig-­‐like	
  domain,	
  Fn	
  –	
  
Fibronectin	
  domain)	
  obtained	
  by	
  immobilization	
  via	
  a	
  ybbR-­‐tag	
  and	
  pulling	
  via	
  the	
  SII-­‐tag.	
  
Curves	
  were	
  obtained	
  from	
  measurements	
  in	
  five	
  different	
  retraction	
  velocities	
  (200,	
  800,	
  
2000,	
  5000	
  and	
  10000	
  nm/s).	
  The	
  heat	
  map	
  illustrates	
  data	
  density.	
  I27	
  unfolding	
  is	
  rarely	
  
observed	
  as	
  the	
  required	
  forces	
  exceed	
  the	
  most	
  probable	
  rupture	
  force	
  of	
  the	
  SII:monoST	
  
interaction.	
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Since	
  TK	
  proved	
  to	
  be	
  a	
  useful	
  (low	
  force)	
  fingerprint	
  to	
  select	
  and	
  sort	
  specific	
  
curves	
  from	
  the	
  dataset,	
  we	
  could	
  also	
  perform	
  a	
  loading	
  rate	
  dependence	
  analysis	
  
of	
  the	
  rupture	
  force	
  between	
  N-­‐terminally	
  fused	
  SII	
  and	
  monoST	
  (Fig.	
  4B).	
  The	
  
rupture	
  forces	
  for	
  the	
  C-­‐terminally	
  tagged	
  GFP-­‐SII	
  fusion	
  are	
  about	
  twice	
  as	
  high	
  as	
  
for	
  N-­‐terminally	
  SII-­‐tagged	
  TK.	
  In	
  agreement	
  with	
  this,	
  the	
  potential	
  is	
  broadened	
  
about	
  twofold	
  for	
  the	
  latter	
  (Δx=0.45	
  nm	
  vs.	
  0.23	
  nm	
  for	
  GFP-­‐SII).	
  Koff	
  is	
  in	
  a	
  
comparable	
  range	
  for	
  the	
  two	
  different	
  geometries,	
  taking	
  into	
  account	
  that	
  fusing	
  
SII	
  to	
  different	
  proteins	
  can	
  already	
  lead	
  to	
  large	
  deviations	
  (0.02-­‐0.3	
  s-­‐1	
  from	
  
surface	
  plasmon	
  resonance	
  measurements	
  for	
  GFP-­‐SII	
  and	
  Cytb562-­‐SII)16.	
  It	
  has	
  to	
  be	
  
noted,	
  that	
  no	
  literature	
  data	
  exists	
  concerning	
  off-­‐rates	
  of	
  an	
  N-­‐terminally	
  SII-­‐
tagged	
  protein	
  from	
  ST.	
  For	
  our	
  ITC-­‐based	
  Kd	
  measurements	
  utilizing	
  N-­‐	
  or	
  C-­‐
terminally	
  tagged	
  GFP,	
  values	
  are	
  in	
  the	
  same	
  range	
  at	
  around	
  1	
  µM.	
  The	
  
discrepancy	
  in	
  unbinding	
  force	
  for	
  the	
  different	
  constructs	
  can	
  thus	
  be	
  more	
  likely	
  
attributed	
  to	
  the	
  altered	
  pulling	
  geometry.	
  
 
Control measurements were carried out either employing a C-terminally GCN4-tagged 
GFP variant that was immobilized via the ybbR-tag on the surface (Supplementary Fig. 
S6), accordingly or by utilizing a ST construct on the cantilever that was completely 
devoid of a SII binding site.  The fully mutated construct did not show any significant 
interaction, i.e. little interaction was observed and mainly single-WLC curves were 
obtained, likely originating from PEG stretching through unspecific interaction (data not 
shown). Further, desthiobiotin at 1mM concentration in the measurement buffer was used 
to block specific SII:monoST interactions (Supplementary Fig. S6). Even though initially 
GFP unfolding is still observed, the number of events is reduced compared to the data 
obtained before addition of the competitor, even more so over time when the competitor 
is fully diffused throughout the measurement buffer. 
 
Successful coupling of ybbR-GFP constructs for control experiments and generally all 
measurements could be verified by detecting the GFP fluorescence on the surface (data 
not shown). 
Further, the performance of monoST and tetraST in ybbR-GFP-SII force spectroscopy 
experiments was compared. Looking at the number of successful single-GFP unfolding 
events over time (illustrated by final rupture force vs. curve number) shows that the 
monoST construct is more stable over the entire measurement than the tetravalent version 
(Supplementary Fig. S7). A comparison of data yield for different measurements utilizing 
either tetra- or monoST is shown in Supplementary Table 1. A clear increase in yield of 
single event curves when employing the monovalent construct is evident. Remarkably, 
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this is only looking at curves showing single GFP unfolding with subsequent SII/ST 
unbinding. 

Supplementary Figure S6.  Control and blocking experiments to validate specific 
SII:monoST interactions. The upper panel displays final SII:monoST unbinding forces (when a 
single GFP was unfolded) according to the curve number (at 10000 nm/s retraction velocity). 
First a GFP construct harbouring a C-terminal SII-tag was probed. After 2000 curves the same ST 
functionalized cantilever was moved to a position on the same glass surface where a GFP devoid 
of SII and harbouring a GCN4 peptide tag instead (also C-terminal) was immobilized. Again after 
another 2000 probing events the cantilever was moved back to the previous protein area. The 
lower panel depicts data obtained without and after addition of 1 mM desthiobition to the 
measurement buffer (same surface, same cantilever) that competes with the SII binding site. 
 
Supplementary Table 1. Comparison of data yield from different AFM experiments. Exemplary 
measurements with tetraST and monoST were evaluated. For comparison data obtained with a 
retraction velocity of 5000 nm/s was taken into account. As the total number of collected curves 
varies, the ratio #single GFP unfolding events to #total curves is a good evaluation criterion. 

measurement #total curves #single GFP unfolding 
events Ratio [%] 

Tetra I 8194 203 2.48 
Tetra II 6531 170 2.60 
Tetra III 8171 70 0.86 
Tetra IV 10490 336 3.20 
Mono I 8774 747 8.51 
Mono II 6706 571 8.51 
Mono III 10218 635 6.21 
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Supplementary Figure S7. Successful rupture event distribution during the course of a 
measurement. Final SII/ST unbinding forces are depicted (for single GFP unfolding events) 
according to the curve number throughout the experiment. Only curves from the sub data set with 
5000 nm/s retraction velocity were evaluated. The upper two panels display exemplary data 
obtained with tetraST (8000 and 6000 curves total, respectively), the lower one with monoST 
(8000 curves total). 
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Construct	
  sequences	
  
	
  
6xHis-­‐Cys-­‐Strep-­‐Tactin	
  
MGSSHHHHHHHMCGSEAGITGTWYNQLGSTFIVTAGADGALTGTYVTARGNAESRYVLTGRYDSAPATDGS
GTALGWTVAWKNNYRNAHSATTWSGQYVGGAEARINTQWLLTSGTTEANAWKSTLVGHDTFTKVKPSAAS 

 
Non-­‐functional	
  Strep-­‐Tactin	
  
MEAGITGTWYAQLGDTFIVTAGADGALTGTYEAAVGNAESRYVLTGRYDSAPATDGSGTALGWTVAWKNNY
RNAHSATTWSGQYVGGAEARINTQWLLTSGTTEANAWKSTLVGHDTFTKVKPSAAS 
 

 
ybbR-­‐superfolderGFP-­‐SII	
  
GPLGSTMGSSHHHHHHSSGENLYFQGHMDSLEFIASKLAMSKGEELFTGVVPILVELDGDVNGHKFSVRGE
GEGDATIGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDD
GKYKTRAVVKFEGDTLVNRIELKGTDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFTVRHNVEDG
SVQLADHYQQNTPIGDGPVLLPDNHYLSTQTVLSKDPNEKRDHMVLHEYVNAAGITHGMDELYKSGSGSAW
SHPQFEK 

	
  
SII-­‐TK-­‐ybbR	
  
MASWSHPQFEKGAETAVPNSPKSDVPIQAPHFKEELRNLNVRYQSNATLVCKVTGHPKPIVKWYRQ 
GKEIIADGLKYRIQEFKGGYHQLIIASVTDDDATVYQVRATNQGGSVSGTASLEVEVPAKIHLPKT 
LEGMGAVHALRGEVVSIKIPFSGKPDPVITWQKGQDLIDNNGHYQVIVTRSFTSLVFPNGVERKDA 
GFYVVCAKNRFGIDQKTVELDVADVPDPPRGVKVSDVSRDSVNLTWTEPASDGGSKITNYIVEKCA 
TTAERWLRVGQARETRYTVINLFGKTSYQFRVIAENKFGLSKPSEPSEPTITKEDKTRAMNYDEEV 
DETREVSMTKASHSSTKELYEKYMIAEDLGRGEFGIVHRCVETSSKKTYMAKFVKVKGTDQVLVKK 
EISILNIARHRNILHLHESFESMEELVMIFEFISGLDIFERINTSAFELNEREIVSYVHQVCEALQ 
FLHSHNIGHFDIRPENIIYQTRRSSTIKIIEFGQARQLKPGDNFRLLFTAPEYYAPEVHQHDVVST 
ATDMWSLGTLVYVLLSGINPFLAETNQQIIENIMNAEYTFDEEAFKEISIEAMDFVDRLLVKERKS 
RMTASEALQHPWLKQKIERVSTKVIRTLKHRRYYHTLIKKDLNMVVSAARISCGGAIRSQKGVSVA 
KVKVASIEIGPVSGQIMHAVGEEGGHVKYVCKIENYDQSTQVTWYFGVRQLENSEKYEITYEDGVA 
ILYVKDITKLDDGTYRCKVVNDYGEDSSYAELFVKGVREVYDYYCRRTMKKIKRRTDTMRLLERPP 
EFTLPLYNKTAYVGENVRFGVTITVHPEPHVTWYKSGQKIKPGDNDKKYTFESDKGLYQLTINSVT 
TDDDAEYTVVARNKYGEDSCKAKLTVTLHPSSGSGGDSLEFIASKLASGLRGSHHHHHH 

 
 
Abbreviations 
AFM – atomic force microscopy; SMFS – single-molecule force spectroscopy; Cys – 
Cysteine; SA/A – (Strept)avidin; ST – Strep-Tactin; monoST – monovalent Strep-Tactin; 
tetraST – tetravalent Strep-Tactin; SII – Strep-tag II;  ITC – isothermal titration 
calorimetry; GFP – Green Fluorescent Protein; PEG – Polyethylenglycol 
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