Stochastic Optical Reconstruction Microscopy (STORM)

- Fluoreszenzmikroskopie
- Funktionsweise von STORM
- Nutzen von STORM
- Auswertung
- Experimente
- Ausblick
- Fazit
- Quellen

Fluoreszenzmikroskopie

Fluoreszenzmikroskopie

Fluoreszenzfarbstoffe

Probe	<u>Ex(nm)</u>	<u>Em(nm)</u>	<u>MW</u>	Quantum yield
Cy2	489	506	714	0.12
СуЗ	(512);550	570;(615)	767	0.15
Cy3B	558	572;(620)	658	0.67
Cy5	(625);650	670	792	0.28
Cy5.5	675	670	792	0.23
Cy7	743	767	818	0.28

Ex: Excitation (Anregung); Em: Emission; MW: Molecular weight

Funktionsweise von STORM

Funktionsweise von STORM

- Auflösung liegt weit unter der Beugungsgrenze (Motivation):
 - Klassisch: ca. 500 nm Auflösung (vgl. Wellenlänge)
 - mit STORM: ca. 20 nm Auflösung (50 nm in z-Richtung)

- Auflösung liegt weit unter der Beugungsgrenze (Motivation):
 - Klassisch: ca. 500 nm Auflösung (vgl. Wellenlänge)
 - mit STORM: ca. 20 nm Auflösung (50 nm in z-Richtung)
- Messung ist nichtinvasiv (photobleaching)

- Auflösung liegt weit unter der Beugungsgrenze (Motivation):
 - Klassisch: ca. 500 nm Auflösung (vgl. Wellenlänge)
 - mit STORM: ca. 20 nm Auflösung (50 nm in z-Richtung)
- Messung ist nichtinvasiv (photobleaching)
- geringe Messdauer

- Auflösung liegt weit unter der Beugungsgrenze (Motivation):
 - Klassisch: ca. 500 nm Auflösung (vgl. Wellenlänge)
 - mit STORM: ca. 20 nm Auflösung (50 nm in z-Richtung)
- Messung ist nichtinvasiv (photobleaching)
- geringe Messdauer
- 2-farbige Aufnahmen sind machbar

Two-Color Superresolution Imaging with STORM

Nutzen von STORM (Auflösung)

Mikrotubuli sind als röhrenförmige Proteinfilamente Bestandteil des Cytoskeletts eukaryotischer Zellen. Sie dienen der mechanischen Stabilisierung der Zelle und sind verantwortlich für ihre äußere Form.

Superresolution Imaging of Microtubules with STORM

Auswertung

Point spread function (PSF)
 eines einzelnen Cy5-Moleküls:
 Gaußscher Fit über PSF ergibt
 die registrierte Position (siehe 2.)

Auswertung

3. Korrigierte Positionen eineseinzelnen Cy5-Molekülsaufgrund von sample drift:

4. Histogramm der
Standardabweichung für
die Position eines einzelnen
Cy5-Moleküls:

Auswertung

5. Messungenauigkeit

 $\sigma = \sqrt{[s^2/N + a^2/(12N) + 8\pi s^4 b^2/(a^2N^2)]} \approx s/\sqrt{N}$

s: Standardabweichung (siehe 4.)

N: Anzahl der Photonen (siehe PSF)

a: Pixelgröße

b: Standardabweichung des Hintergrundrauschens

(theoretisch ist bei ca. 15.000 gesammelten Photonen unter idealen Bedingungen eine Auflösung von 1-2 nm möglich)

• Auflösung in x-y-Ebene: 20-30 nm • Auflösung in z-Richtung: 50-75 nm • Radiale Reichweite: 500 nm • Reichweite in z-Richtung: 800 nm

• Drei individuelle DNA-Stränge werden mit zwei Cy3-Cy5 Paaren in einem Abstand von 135 (129, 100) Basenpaaren gekoppelt und mit Biotin an einer Streptavidin-Oberfläche befestigt. Cy3 dient der "Erholungsrate" von Cy5.

• Drei individuelle DNA-Stränge werden mit zwei Cy3-Cy5 Paaren in einem Abstand von 135 (129, 100) Basenpaaren gekoppelt und mit Biotin an einer Streptavidin-Oberfläche befestigt. Cy3 dient der "Erholungsrate" von Cy5.

Vier Cy3-Cy5 Paare auf einem DNA-Strang im Abstand von jeweils 46 nm. Unterschiedliche Paar bekommen zur besseren Unterscheidbarkeit unterschiedliche Symbole.

- Theoretische Präzision von 4 nm
- Gemessene Präzision von 8 nm
- Präzisionsverlust wegen nicht perfekter Korrektur des Drifts

Kreisförmiger mit RecA beschichteter DNA-Strang, auf dem mit Fluoreszenzfarbstoff versehene Antikörper sitzen. Obere Aufnahmen wurden mit einem Reflektionsmikroskop gemacht.

Weiße, gelbe und blaue Pfeile zeigen uns Interaktionen und Dehnungen unterschiedlicher Adhäsionskomplexe einer lebenden Zelle. 0 Sec (a) (b) (c) 705 Sec (d) (d) 0 Sec (n) 115 Sec 115 Sec 115 Sec 115 Sec 115 Sec 1105 Sec (n) (n)

Live-Cell Imaging with Single-Molecule Superresolution

Figure 10

Ausblick

- Verbesserung von STORM zu dSTORM (direct stochastic optical reconstruction microscopy)
 - Größere Nutzung von herkömmlichen Farbstoffen, die nicht als Paar benutzt werden müssen (vgl. Cy5-Cy3 Paar) und durch Oxidation und Reduktion (ROXS) zum Leuchten gebracht werden.
 - Bessere Beobachtung von lebenden Zellen möglich.

<u>Fazit</u>

- Bei kleinem Bereich langsamer als z.B. STED, bei größeren Bereichen hingegen schneller → große Bilder möglich.
- Viel höhere Auflösung als "normale" Lichtmikroskopie.
- Ein Bild bei höchster Auflösung dauert nur wenige Minuten.
- Nichtinvasive Technik für lebende Zellen.
- 3D-Bilder mit guter Auflösung.

→ Schnelle, praktikable und hochauflösende Mikroskopietechnik!

<u>Quellen</u>

- http://www.sciencemag.org/content/324/5933/1428.full
- http://www.microscopyu.com/articles/superresolution/stormintro.html
- https://commons.wikimedia.org/wiki/File:Fluoreszenzmikroskopie_20 08-09-28.svg
- Video:

http://www.microscopyu.com/tutorials/flash/superresolution/storm/