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Biasing effects of receptor-ligand complexes on protein-unfolding statistics
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Protein receptor-ligand pairs are increasingly used as specific molecular handles in single-molecule protein-
unfolding experiments. Further, known marker domains, also referred to as fingerprints, provide unique
unfolding signatures to identify specific single-molecule interactions, when receptor-ligand pairs themselves are
investigated. We show here that in cases where there is an overlap between the probability distribution associated
with fingerprint domain unfolding and that associated with receptor-ligand dissociation, the experimentally
measured force distributions are mutually biased. This biasing effect masks the true parameters of the underlying
free energy landscape. To address this, we present a model-free theoretical framework that corrects for the biasing
effect caused by such overlapping distributions.
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I. INTRODUCTION

Mechanical forces play an important role in many biologi-
cal systems. Refolding of individual titin domains is believed
to assist in muscle contraction [1], stretching forces expose
cryptic binding sites involved in focal adhesions [2], and
mechanically stable receptor-ligand pairs govern the assembly
of large extracellular machineries and adhesion of bacterial
cells to their cellulosic carbon sources [3,4]. Single-molecule
pulling experiments with atomic force microscopes [5], optical
tweezers [6], or magnetic tweezers [7] have become widely
used techniques to study such phenomena at the single-
molecule level.

Due to the stochastic nature of domain unfolding, typical
atomic force microscopy experiments record many thousands
of data traces to obtain statistically meaningful results from
single-molecule pulling experiments. To unambiguously iden-
tify the unfolding signals of a given protein domain of interest
or the dissociation of a receptor-ligand system under external
load, the resulting data sets need to be filtered, and specific,
single-molecule interactions must be identified.

To accommodate this need, the community has developed
an elegant strategy to achieve high yields of specific curves:
In this approach, protein domains of interest are fused to a
receptor complex that serves as a specific handle in pulling
experiments. This improves curve yields and data fidelity by
providing a specific molecular interaction handle to “grab”
the protein of interest. Thereby, the unfolding of individual
domains and the dissociation of a receptor-ligand complex
can be studied in a single experiment [3,4,8–10]. Also, using
a known protein domain in the fusion construct provides a
unique unfolding pattern that can be used to identify specific
traces, when receptor-ligand unbinding itself is studied. These
domains are then referred to as fingerprint domains [5].

In order for a curve to be unambiguously identified as
constituting specific signal, it needs to exhibit unfolding of all
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included fingerprint domains plus a specific receptor-ligand
dissociation event. Throughout this letter we will refer to
domains fused to a receptor-ligand complex as fingerprint
domains for both scenarios, namely protein-unfolding stud-
ies using receptor-ligand complexes as specific handles, as
well as unbinding studies of receptor-ligand complexes of
interest, which use fingerprint domains for assistance in data
filtering. We discuss the statistical effects that arise when the
respective force distributions for fingerprint domain unfolding
and receptor-ligand complex rupture exhibit a finite overlap.
We quantitatively show how the statistical overlap between
these two distributions affects the experimentally observable
unfolding and rupture force distributions. We provide a frame-
work for extracting kinetic and energetic information from the
experimentally observed distributions that are corrected for
the biasing effects arising from such overlaps in a model-free
fashion.

II. THEORETICAL FRAMEWORK

The standard theoretical framework treats protein unfolding
or bond dissociation as thermally driven escape over a free
energy barrier that is modulated by an external force F

[11–14]. This description leads to a general expression for
the distribution of unfolding or rupture forces in a pulling
experiment,

p(F ) = k(F )

Ḟ (F )
exp

(
−

∫ F

0
dF ′ k(F ′)

Ḟ (F ′)

)
, (1)

where k(F ) is the force-dependent off rate of the system, and
Ḟ (F ) is the force loading rate. In the simplest picture [12,13],
the force-dependent off rate is given by [11]

k(F ) = k0 exp

(
F�x

kBT

)
(2)

where k0 and �x are the zero-force off rate and distance
to the free energy barrier, respectively. For a constant force
loading rate Ḟ and an off rate from Eq. (2), the integral
in Eq. (1) can be solved analytically [Fig. 1(a)]. Dudko
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FIG. 1. (a) Overlapping distributions of fingerprint unfolding
(blue region) and complex rupture (green region) for a constant
loading rate Ḟ = 200 pN s−1 with fingerprint �x = 0.4 nm, and
k0 = 0.005 s−1 and complex parameters �x = 0.35 nm, and k0 =
0.001 s−1 obtained by integrating Eq. (1) using Eq. (2). (b) Schematic
of possible outcomes for the situation in (a). Analyzable data show
fingerprint unfolding followed by complex rupture (upper path). Due
to the overlapping distributions for unfolding and rupture, complex
rupture with an intact fingerprint is also possible (lower path).

et al. [15] have used the Kramers theory [16] to obtain a
more sophisticated expression for the force-dependent off
rate, which accounts for the specific shape of the free energy
landscape. This approach also provides an analytical solution
to Eq. (1) for a constant loading rate and includes the height of
the free energy barrier �G as an additional parameter. Over
the years, more theoretical models describing the distributions
for domain unfolding and receptor-ligand dissociation have
been developed [17–22] that can be applied to experimentally
measured force distributions.

Since a constant force loading rate is required to obtain an
analytical solution for the distribution of forces in a pulling
experiment, force ramp measurements [23,24], where the
external force is ramped linearly, are an elegant technique
to study protein unfolding and receptor-ligand dissociation.
In an experiment where a receptor-ligand system is used to
probe the unfolding behavior of a protein fingerprint domain

of interest, care has to be taken when analyzing the resulting
unfolding or rupture force distributions. If the probability
distributions for fingerprint domain unfolding and complex
rupture are disjunct, i.e., the complex ruptures at forces well
above those required for fingerprint unfolding, the measured
distributions are unbiased and can be readily analyzed using a
desired form of Eq. (1). If those distributions have a substantial
overlap [Fig. 1(a)], however, biasing effects have to be taken
into account.

To pass the data analysis filter a given curve is required
to exhibit both fingerprint unfolding and complex rupture
[Fig. 1(b); upper path], i.e., the complex must not rupture
prior to fingerprint unfolding [Fig. 1(b); lower path]. Con-
sequently, the resulting distribution of fingerprint unfolding
forces will be shifted downwards towards lower forces. By
the same logic, experimentally observed distributions for
receptor-ligand complex rupture forces will be truncated at
the lower end and shifted upwards toward higher forces in a
constant-loading-rate experiment. This biasing effect has been
used qualitatively by Jobst et al. [8] to unambiguously identify
a redundant dual binding mode in a receptor-ligand complex.

Here we treat this biasing effect quantitatively and calculate
these effects independent of the model used in Eq. (1). For
overlapping distributions of fingerprint, pf(F ), and receptor-
ligand complex, pc(F ), the biased distribution of the finger-
print, p�

f (F ), can be calculated by multiplying the original
distribution by the cumulative probability for the bond to
rupture at higher forces and renormalizing,

p�
f (F ) = pf(F )

∫ ∞
F

dF ′ pc(F ′)
η

, (3)

where η is a normalization constant. Since pc(f ) is normalized,
Eq. (3) can be rewritten,

p�
f (F ) = pf(F )

(
1 − ∫ F

0 dF ′ pc(F ′)
)

η
(4)

= pf(F )(1 − Pc(F ))

η
, (5)

where Pc(F ) is the cumulative distribution function of the
complex rupture forces. The normalization constant η can be
calculated by integrating over the numerator in Eq. (5):

η = 1 −
∫ ∞

0
dF pf(F )Pc(F ). (6)

Intuitively, the biased fingerprint distribution is normalized
by the ratio of curves that exhibit fingerprint unfolding vs all
rupture events. The above calculations apply for both constant-
loading-rate and constant-speed measurements. By the same
logic, the biased distribution of observed complex ruptures for
a constant loading rate can be calculated as

p�
c (F ) = pc(F )Pf(F )

η
. (7)

Both biased distributions for fingerprint unfolding, p�
f (F ), and

complex ruptures, p�
c (F ), are normalized by the same yield

parameter η since both distributions are extracted from the
same curves in a given data set. For a mathematical proof,
see Appendix A. We note that the biasing effect on complex
rupture in the constant-speed case is more difficult to quantify.
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FIG. 2. Force ramp simulation with Ḟ = 200 pN s−1, complex
�xc = 0.4 nm, k0,c = 0.002 s−1, and fingerprint �xf = 0.4 nm,
k0,f = 0.005 s−1 (η = 0.71). Histograms of the simulated fingerprint
unfolding forces and complex ruptures are shown in blue and green,
respectively. Dashed blue and green lines represent the unbiased
fingerprint unfolding and complex rupture force distributions, re-
spectively. Biased unfolding and complex rupture force distributions
for the fingerprint and complex calculated from Eqs. (5) and (7) are
shown by solid blue and green lines, respectively.

Since the additional contour length released upon fingerprint
unfolding is not immediately compensated for by a feedback
on the force signal, there is a pronounced drop in force associ-
ated with fingerprint unfolding, giving rise to the characteristic
sawtooth pattern in force extension traces. Ignoring the finite
relaxation time of the harmonic pulling device, the force will
drop from F1 = F (x,L) to F2 = F (x,L + �L), where the
former describes the (nonlinear) elastic behavior of the pulling
device and potential linker molecules, and �L is the additional
contour length released upon fingerprint unfolding. Whether
or not the observed complex distribution is biased depends
on the value of pc(F2). For pc(F2) ≈ 0, no biasing will occur,
whereas pc(F2) > 0 will cause a biasing effect. In practice, �L

is usually large enough to ensure that complex distributions are
unbiased in constant-speed experiments, leaving a substantial
bias only on the observed fingerprint distribution. A strategy
to implement our correction procedure for the constant-speed
protocol is proposed in Appendix B.

III. MONTE CARLO SIMULATIONS

To validate our results, we used a Monte Carlo approach
to simulate fingerprint domain unfolding in combination
with receptor-ligand dissociation in a constant-loading-rate

protocol. Our simulation routine is similar to the approach
described in Ref. [25] and uses the phenomenological model
due to its analytical tractability. Briefly, we integrate Eq. (2)
over a time step �t , where F = F (t) = Ḟ t , to obtain probabil-
ities pu and pr for fingerprint unfolding and complex rupture,
respectively. These probabilities are compared to independent
random numbers nu and nr between 0 and unity. If pu < nu and
pr < nr, the fingerprint and complex remain intact and the next
iteration is started. If pu > nu and pr < nr, the corresponding
force is noted as the fingerprint unfolding force and the next
iteration is started with only the complex intact. The simulation
then continues until pr > nr and the corresponding force is
noted as the complex rupture force. If pu < nu and pr > nr or
pu > nu and pr > nr, the complex ruptured prior to fingerprint
unfolding or at the same time, and an experimental curve
would be unanalyzable and filtered out during the data analysis
procedure.

Results from a Monte Carlo simulation at constant loading
rate Ḟ = 200 pN s−1 with overlapping distributions for fin-
gerprint unfolding and complex rupture are shown in Fig. 2.
N = 10000 traces were simulated and the observed fingerprint
domain unfolding forces and receptor-ligand complex rupture
forces were histogrammed. We only analyzed curves that
showed both fingerprint unfolding and complex rupture to
mimic experimental conditions. As expected, both fingerprint
unfolding and complex rupture distributions (blue and green
histograms in Fig. 2) are shifted from the unbiased input
distributions (dashed blue and green lines in Fig. 2). The biased
results are well described by our theoretical predictions, which
are shown as solid blue and green lines in Fig. 2. To illustrate
the potential errors that can occur from not accounting for the
fingerprint biasing effect, we used the uncorrected distribution
[Eq. (1)] to fit the biased fingerprint domain unfolding and
complex rupture histograms and compared the resulting fit
parameters �xfit and k0,fit with the unbiased input parameters
(Table I). We found that for fingerprint domain unfolding,
�x is hardly affected, while k0 is overestimated by 30%.
For complex rupture �x is overestimated by 29% due to
the smaller width of the biased distribution, while k0 is
underestimated by over an order of magnitude. If the unbiased
parameters for the complex distribution are known from a
control experiment, our predicted biased distributions can be
used to fit the experimental data to obtain unbiased values
for the fit parameters pertaining to the fingerprint, or vice
versa. Alternatively, a global fitting procedure can be applied
to both biased distributions for constant-loading-rate data to
obtain unbiased fit parameters without prior knowledge of
either distribution. Using this approach, we obtained global
fit parameters that were within 6% of the input parameters
(Table I).

TABLE I. Input vs fit parameters of the simulation shown in Fig. 2. For these parameters, the yield parameter equals η = 0.71. Initially,
the simulated distributions were fit with the uncorrected distributions (k0,fit and �xfit). To correct for the biasing effects, both fingerprint and
complex data were fit with their respective biased distributions [Eqs. (5) and (7)] in a global fitting procedure to obtain the corrected parameters
k0,global and �xglobal.

k0,input (s−1) k0,fit (s−1) k0,global (s−1) �xinput (nm) �xfit (nm) �xglobal (nm)

Fingerprint 5.0 × 10−3 (6.6 ± 0.2) × 10−3 (4.7 × 0.4) × 10−3 0.400 0.402 ± 0.007 0.401 ± 0.005
Complex 2.0 × 10−3 (0.10 ± 0.02) × 10−3 (1.9 ± 0.02) × 10−3 0.400 0.527 ± 0.007 0.402 ± 0.005
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Fingerprint

Complex

FIG. 3. Biasing of fingerprint unfolding and complex rupture
forces as a function of the theoretical yield of curves exhibiting
fingerprint unfolding η. Data points show the relative mean biased
unfolding force 〈F 〉b/〈F 〉ub; fingerprint and complex data are shown
in blue and green, respectively. For fingerprint data, parameters
were held constant at �xf = 0.4 nm and k0,f = 0.005 s−1, while
the complex distribution was shifted by maintaining �xc = 0.4 nm
and varying the off rate. For complex data, �xc = 0.4 nm and
k0,c = 0.005 s−1 were held constant and the fingerprint distribution
was shifted by maintaining �xf = 0.4 nm and varying the off rate.
Dashed lines represent predictions based on Eq. (9) and (10).

IV. SPECIAL CASE: EQUAL POTENTIAL WIDTHS

In Fig. 3 we quantify the magnitude of the biasing
effect by numerically calculating the relative mean biased
unfolding force of the fingerprint (blue symbols) and complex
(green symbols) 〈F 〉b/〈F 〉ub = ∫

dF Fp∗
f/c(F )/

∫
dF Fpf/c(F )

as a function of the theoretical ratio of curves exhibiting
fingerprint unfolding prior to receptor-ligand complex rupture,
η [Eq. (6)]. For analytical tractability we chose the special case
�xc = �xf. With this simplification we find for the fingerprint

〈F 〉b = kBT

�xf
e

kBT k0,f
�xfrη E1

(
kBT k0,f

�xfrη

)
, (8)

where E1(x) is the exponential integral. Using exE1(x) ∼=
ln (1 + e−γ

x
) we can produce an analytical approximation for

the relative mean biased unfolding force for the aforemen-
tioned special case,

〈F 〉b

〈F 〉ub

∼=
ln

(
1 + r�xf

k0,fkBT
e−γ η

)
ln

(
1 + r�xf

k0,fkBT
e−γ

) , (9)

where γ = 0.577 . . . is the Euler-Mascheroni constant. The
analogous result for the complex reads

〈F 〉b

〈F 〉ub

∼= 1

η
−

ln
(
1 + r�xc

k0,ckBT
e−γ (1 − η)

)
ln

(
1 + r�xc

k0,ckBT
e−γ

) 1 − η

η
. (10)

For this special case Eq. (6) can be evaluated analytically,

yielding η = (1 + k0,c

k0,f
)
−1

. Equations (9) and (10) (dashed
lines in Fig. 3) agree very well with our numerical results
over the loading-rate regime covered. Figure 3 clearly shows
that the biasing effect is more pronounced for low loading
rates, consistent with our theoretical predictions based on

Eqs. (9) and (10). In cases where data cannot be corrected
for a potential biasing effect, e.g., due to low experimental
yields, the magnitude of the biasing effect can be minimized
by increasing the loading rate in a pulling experiment.

V. CONCLUSION

Our calculations provide a framework for analyzing single-
molecule force spectroscopy data where receptor-ligand sys-
tems are used as specific handles to study a fingerprint domain
of interest, or vice versa. In such experiments, it is many
times the case that the distributions of fingerprint domain
unfolding and complex rupture have a significant overlap (a
few exemplary cases can be found in Refs. [3,9,10,26]). In
this case biasing effects will occur and should be considered
in the analysis procedure. Our findings can be applied to
both constant-speed and force ramp (constant-loading-rate)
experimental protocols, however, it should be noted that the
biasing effect on complex unbinding is more complicated in
the constant-speed protocol, due to the drop in force upon
fingerprint unfolding dependent on the length of the unfolded
domain. Since the biasing effects are solely due to the statistical
nature of domain unfolding or complex unbinding, our results,
specifically Eqs. (5) and (7), are valid regardless of the specific
model used in Eq. (1).
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FIG. 4. Force ramp simulation with Ḟ = 200 pN s−1, complex
�xc = 0.4 nm, k0,c = 0.002 s−1, fingerprint �xf = 0.4 nm, k0,f =
0.005 s−1 (η = 0.71), and simulated traces N = 1000. Histograms of
the simulated fingerprint unfolding forces and complex ruptures are
shown in blue and green, respectively. Dashed blue and green lines
represent the unbiased fingerprint unfolding and complex rupture
force distributions, respectively. Biased unfolding and complex
rupture force distributions for the fingerprint and complex calculated
from Eqs. (5) and (7) are shown by solid blue and green lines,
respectively.
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TABLE II. Input vs fit parameters of the simulation shown in Fig. 4. For these parameters, the yield parameter equals η = 0.71. Initially,
the simulated distributions were fit with the uncorrected distributions (k0,fit and �xfit). To correct for the biasing effects, both fingerprint and
complex data were fit with their respective biased distributions [Eqs. (5) and (7)] in a global fitting procedure to obtain the corrected parameters
k0,global and �xglobal.

k0,input (s−1) k0,fit (s−1) k0,global (s−1) �xinput(nm) �xfit (nm) �xglobal (nm)

Fingerprint 5.0 × 10−3 (5.9 ± 1.2) × 10−3 (4.3 ± 1.5) × 10−3 0.400 0.409 ± 0.011 0.410 ± 0.020
Complex 2.0 × 10−3 (0.2 ± 0.1) × 10−3 (2.7 ± 1.3) × 10−3 0.400 0.504 ± 0.020 0.384 ± 0.021

APPENDIX A: IDENTITY OF YIELD PARAMETER
η IN EQS. (5) AND (7)

As we state in the text, the normalization parameter η is
equal to the ratio of curves that exhibit fingerprint unfolding
vs all rupture events. In other words a fraction 1 − η of
all curves will be “missed” in an actual experiment, since
they do not exhibit fingerprint unfolding and would hence be
discarded during data analysis. Consequently, both fingerprint
and complex distributions (which are obtained from the same
curves) need to be normalized by the same η to obtain
probability distributions normalized to unity. Mathematically,

one needs to show that

1 −
∫ ∞

0
dF pf(F )Pc(F ) = η =

∫ ∞

0
dF pc(F )Pf(F ). (A1)

We use integration by parts and
∫ F

0 dF ′ p(F ′) = P (F ) to
evaluate the right-hand side (rhs) of Eq. (A1):

rhs = Pc(F )Pf(F )
∣∣∞
0 −

∫ ∞

0
dF Pc(F )pf(F ). (A2)

Since P (0) = 0 and P (∞) = 1 this is equal to the left-hand
side of Eq. (A1).

(a)

(c)

(b)

(d)

FIG. 5. Force ramp simulation with complex �xc = 0.35 nm, k0,c = 0.004 s−1, fingerprint �xf = 0.4 nm, k0,f = 0.005 s−1, and varying
Ḟ . Due to the different potential widths �x, the yield parameter η changes with the loading rate. Values of the loading rate and resulting
yield parameter are (a) Ḟ = 20 pN s−1 and η = 0.70, (b) Ḟ = 200 pN s−1 and η = 0.75, (c) Ḟ = 2000 pN s−1 and η = 0.80, and (d) Ḟ =
20000 pN s−1 and η = 0.85. Histograms of the simulated fingerprint unfolding forces and complex ruptures are shown in blue and green,
respectively. Dashed blue and green lines represent the unbiased fingerprint unfolding and complex rupture force distributions, respectively.
Biased unfolding and complex rupture force distributions for the fingerprint and complex calculated from Eqs. (5) and (7) are shown by solid
blue and green lines, respectively.
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APPENDIX B: CONSTANT SPEED

As pointed out in the text, the correction procedure for
distributions obtained from constant-speed measurements is
more involved. In this Appendix we discuss a strategy for
extracting unbiased parameters from fingerprint distributions
for this pulling protocol. Due to the nonlinear elasticity
of linker molecules (e.g., polyethylene glycol, spacers, or
unfolded protein backbone), the force loading rate Ḟ = Ḟ (F )
becomes a function of the force and the integral in Eq. (1)
can no longer be evaluated analytically. In a standard pulling
experiment, a harmonic pulling device (e.g., atomic force
microscopy cantilever or optically trapped bead) is connected
to the aforementioned linker molecules. By applying a force
balance it can be shown that the force loading rate is given
by [14]

v

Ḟ (F )
= 1

kh
+ ∂x(F )

∂F
, (B1)

where v is the pulling speed, kh is the spring constant of
the harmonic pulling device, and x(F ) is the force-dependent
extension of the linker. The biased distribution for fingerprint
unfolding p�

f (F ) can be computed by numerically solving
the integrals occurring in Eqs. (5) and (6), using a model
for the elastic response of the linker molecules such as the
worm-like-chain model, freely rotating model, or composite

model proposed by Livadaru et al. [27] in Eq. (B1). The choice
of model should be made based on the force regime in which
fingerprint unfolding and complex rupture are expected and
the molecular linkers present in an experimental setup need to
be accounted for in these models via their contour length, L,
and elasticity, e.g., persistence length p. The force-dependent
loading rate for the worm-like-chain model has been derived
as Eq. (4) in Ref. [14].

APPENDIX C: SUPPLEMENTAL FIGURES AND TABLES

This Appendix contains contains two figures and one table
that support the results in the text. Figure 4 shows the results of
a simulation with parameters identical to those in Fig. 2, except
only N = 1000 traces were simulated, to mimic a total number
of curves more similar to average experimental yields. The
extracted fit parameters for this simulation are listed in Table II.
We note that despite the increase in uncertainties, the extracted
parameters from our global fitting procedure still reproduce
the input parameters much better than those obtained from a
fit to the uncorrected distributions. Figure 5 shows the results
of Monte Carlo simulations at different loading rates ranging
from Ḟ = 20 pN s−1 to Ḟ = 20 000 pN s−1. Due to the differ-
ent potential widths �xc = 0.35 nm and �xf = 0.4 nm, the
yield parameter η varies for the different simulations.
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